On the Baker--Gammel--Wills conjecture in the~theory of Pad\'e approximants
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 811-823

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Padé conjecture, which was formulated in 1961 by Baker, Gammel, and Wills states that for each meromorphic function $f$ in the unit disc $D$ there exists a subsequence of its diagonal Padé approximants converging to $f$ uniformly on all compact subsets of $D$ not containing the poles of $f$. In 2001, Lubinsky found a meromorphic function in $D$ disproving Padé's conjecture. The function presented in this article disproves the holomorphic version of Padé's conjecture and simultaneously disproves Stahl's conjecture (Padé's conjecture for algebraic functions).
@article{SM_2002_193_6_a1,
     author = {V. I. Buslaev},
     title = {On the {Baker--Gammel--Wills} conjecture in the~theory of {Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {811--823},
     publisher = {mathdoc},
     volume = {193},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On the Baker--Gammel--Wills conjecture in the~theory of Pad\'e approximants
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 811
EP  - 823
VL  - 193
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/
LA  - en
ID  - SM_2002_193_6_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On the Baker--Gammel--Wills conjecture in the~theory of Pad\'e approximants
%J Sbornik. Mathematics
%D 2002
%P 811-823
%V 193
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/
%G en
%F SM_2002_193_6_a1
V. I. Buslaev. On the Baker--Gammel--Wills conjecture in the~theory of Pad\'e approximants. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 811-823. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/