On the Baker--Gammel--Wills conjecture in the~theory of Pad\'e approximants
Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 811-823
Voir la notice de l'article provenant de la source Math-Net.Ru
The well-known Padé conjecture, which was formulated in 1961 by Baker, Gammel, and Wills states that for each meromorphic function $f$ in the unit disc $D$ there exists a subsequence of its diagonal Padé approximants converging to $f$ uniformly on all compact subsets of
$D$ not containing the poles of $f$. In 2001, Lubinsky found a meromorphic function in $D$ disproving Padé's conjecture.
The function presented in this article disproves the holomorphic version of Padé's conjecture and simultaneously disproves Stahl's conjecture (Padé's conjecture for algebraic functions).
@article{SM_2002_193_6_a1,
author = {V. I. Buslaev},
title = {On the {Baker--Gammel--Wills} conjecture in the~theory of {Pad\'e} approximants},
journal = {Sbornik. Mathematics},
pages = {811--823},
publisher = {mathdoc},
volume = {193},
number = {6},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/}
}
V. I. Buslaev. On the Baker--Gammel--Wills conjecture in the~theory of Pad\'e approximants. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 811-823. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/