@article{SM_2002_193_6_a1,
author = {V. I. Buslaev},
title = {On the {Baker{\textendash}Gammel{\textendash}Wills} conjecture in the~theory of {Pad\'e} approximants},
journal = {Sbornik. Mathematics},
pages = {811--823},
year = {2002},
volume = {193},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/}
}
V. I. Buslaev. On the Baker–Gammel–Wills conjecture in the theory of Padé approximants. Sbornik. Mathematics, Tome 193 (2002) no. 6, pp. 811-823. http://geodesic.mathdoc.fr/item/SM_2002_193_6_a1/
[1] Baker G. A., Jr., Gammel J. L., Wills J. G., “An investigation of the applicability of the Padé approximant method”, J. Math. Anal. Appl., 2 (1961), 405–418 | DOI | MR | Zbl
[2] Baker G. A., Essentials of Padé approximants, Academic Press, New York, 1975 | MR
[3] Wallin H., “The convergence of Padé approximants and the size of the power series coefficients”, Appl. Anal., 4 (1974), 235–251 | DOI | MR | Zbl
[4] Markov A. A., “Dva dokazatelstva skhodimosti nekotorykh nepreryvnykh drobei”, Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948, 106–119 | MR
[5] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97 (139) (1975), 607–629 | MR | Zbl
[6] Rakhmanov E. A., “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104 (146) (1977), 271–291 | MR | Zbl
[7] Baker G. A., Jr., Graves-Morris P. R., “Padé approximants. I: Basic theory”, Encyclopedia of Mathematics and its Applications, V. 13, Addison-Wesley Publ. Co., London, 1981, 238–239 | MR
[8] Buslaev V. I., Gonchar A. A., Suetin S. P., “O skhodimosti podposledovatelnostei $m$-i stroki tablitsy Pade”, Matem. sb., 120 (162):4 (1983), 540–545 | MR | Zbl
[9] Stahl H., “Conjectures around the Baker–Gammel–Wills conjecture”, Constr. Approx., 13 (1997), 287–292 | DOI | MR | Zbl
[10] Stahl H., “Ortogonal polynomials with complex valued weight function. I; II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl
[11] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), Spec. Iss. (1996), 121–193 | MR | Zbl
[12] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl
[13] Lubinsky D., “Rogers–Ramanujan and the Baker–Gammel–Wills (Padé) conjecture”, Ann. of Math. (2) (to appear) | MR | Zbl
[14] Buslaev V. I., “Simple counterexample to the Baker–Gammel–Wills conjecture”, East J. Approx., 7:4 (2001), 515–517 | MR | Zbl
[15] Buslaev V. I., “O teoreme Van Fleka dlya pravilnykh $C$-drobei s predelno periodicheskimi koeffitsientami”, Izv. RAN. Ser. matem., 65:4 (2001), 35–48 | MR | Zbl
[16] Buslaev V. I., Remarks on Poincaré and Van Vleck theorems, Industrial Mathematics Institute Preprint Series, No 14, University of South Carolina, 1999, p. –21
[17] Pringsheim A., “Über die Konvergenz unendücher Kettenbruche”, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., 28 (1899), 295–324
[18] Hirschhorn M. D., “Partitions and Ramanujan's continued fraction”, Duke Math. J., 39 (1972), 789–791 | DOI | MR | Zbl
[19] Poincaré H., “Sur les équations linéaires aux différentielles et aux différences finies”, Amer. J. Math., 7 (1885), 203–258 | DOI | MR
[20] Perron O., “Über einen Satz des Herrn Poincaré”, J. Reine Angew. Math., 136 (1909), 17–37 ; “Über die Poincarésche lineare Differenrengleichung”, J. Reine Angew. Math., 137 (1910), 6–64 | Zbl