Chattering on optimal trajectories of Hölder problems
Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 669-683 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the minimization of the mean-square deviation from the origin is studied in the class of functions on a half-axis with derivatives satisfying the Hölder condition. The support of the solution is shown to be a finite interval and the optimal function makes countably many switches from intervals of maximum increase of the velocity to intervals of its maximum decrease. Switches accumulate to the right end-point of the support. An application of the results to the problem of precise constants in Kolmogorov-type inequalities for fractional derivatives is presented.
@article{SM_2002_193_5_a2,
     author = {M. I. Zelikin},
     title = {Chattering on optimal trajectories of {H\"older} problems},
     journal = {Sbornik. Mathematics},
     pages = {669--683},
     year = {2002},
     volume = {193},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_5_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - Chattering on optimal trajectories of Hölder problems
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 669
EP  - 683
VL  - 193
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_5_a2/
LA  - en
ID  - SM_2002_193_5_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T Chattering on optimal trajectories of Hölder problems
%J Sbornik. Mathematics
%D 2002
%P 669-683
%V 193
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2002_193_5_a2/
%G en
%F SM_2002_193_5_a2
M. I. Zelikin. Chattering on optimal trajectories of Hölder problems. Sbornik. Mathematics, Tome 193 (2002) no. 5, pp. 669-683. http://geodesic.mathdoc.fr/item/SM_2002_193_5_a2/

[1] Leonov S. L., “On the solution of an optimal recovery problem and its applications in nonparametric regression”, Math. Methods Statist., 6:4 (1997), 476–490 | MR | Zbl

[2] Korostelev A. P., “Exact asymptotically minimax estimator for nonparametric regression in the uniform norm”, Theory Probab. Appl., 38 (1993), 875–882 | DOI | MR | Zbl

[3] Korostelev A. P., Nessbaum M., Density estimation in the uniform norm and white noise approximation, Preprint 153, Weierstrass-Institute Angew. Anal. Stoch., Berlin, 1995

[4] Lepski O. V., Spokoiny V. G., “Optimal pointwise adaptive methods in nonparametric estimation”, Disk. Paper 22, SFB 373, Humboldt University, Berlin, 1995, 229–252

[5] Bahadur R. R., “On the asymptotic efficiency of tests and estimators”, Sankhyā, 22 (1960), 229–252 | MR | Zbl

[6] Ibragimov I. A., Khasminskii R. Z., Statistical estimation: asymptotic theory, Springer-Verlag, New York, 1981 | MR

[7] Korostelev A. P., Leonov S. L., “Minimax Bahadur efficiency for small confidence levels”, Probl. Inf. Transm., 32 (1996), 3–15 | MR | Zbl

[8] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[9] Magaril-Ilyaev G. G., Tikhomirov V. M., “O neravenstve Kolmogorova dlya drobnykh proizvodnykh na polupryamoi”, Anal. Math., 7:1 (1981), 37–47 | DOI | MR | Zbl

[10] Zelikin M. I., Zelikina L. F., “Tochnye konstanty v neravenstvakh tipa Kolmogorova”, Tr. MIAN, 227, Nauka, M., 1999, 137–145 | MR | Zbl

[11] Zelikin M., Borisov V., Theory of chattering control with applications to cosmonautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl