Borsuk–Ulam theorem in infinite-dimensional Banach spaces
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 83-91
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known classical Borsuk–Ulam theorem has a broad range of applications to various problems. Its generalization to infinite-dimensional spaces runs across substantial difficulties because its statement is essentially finite-dimensional. A result established in the paper is a natural generalization of the Borsuk–Ulam theorem to infinite-dimensional Banach spaces. Applications of this theorem to various problems are discussed.
@article{SM_2002_193_1_a2,
     author = {B. D. Gel'man},
     title = {Borsuk{\textendash}Ulam theorem in infinite-dimensional {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {83--91},
     year = {2002},
     volume = {193},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - Borsuk–Ulam theorem in infinite-dimensional Banach spaces
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 83
EP  - 91
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/
LA  - en
ID  - SM_2002_193_1_a2
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T Borsuk–Ulam theorem in infinite-dimensional Banach spaces
%J Sbornik. Mathematics
%D 2002
%P 83-91
%V 193
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/
%G en
%F SM_2002_193_1_a2
B. D. Gel'man. Borsuk–Ulam theorem in infinite-dimensional Banach spaces. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/

[1] Dugundji J., Granas A., Fixed point theory, PWN, Warszawa, 1982 | MR | Zbl

[2] Steinlein H., “Borsuk's antipodal theorem and its generalizations and applications: a survey”, Méthodes topologiques en analyse non linéaire., Sémin. Math. Supér., Sémin. Sci. OTAN, 95, NATO Adv. Study Inst., 1985, 166–235 | MR | Zbl

[3] Granas A., “The theory of compact vector fields and some of its applications to the topology of functional spaces, I”, Rozprawy Mat., 30 (1962) | MR | Zbl

[4] Gelman B. D., “Teorema ob antipodakh v beskonechnomernom banakhovom prostranstve”, Sovremennyi analiz i ego prilozheniya, VZMSh-2000 (Voronezh, 2000), 63–64

[5] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[6] Dzedzej Z., “Equivariant selections and approximations”, Topological methods in nonlinear analysis (Gdansk, 1997), 25–31

[7] Izydorek M., “The Bourgin–Yang theorem for multi-valued maps in the nonsymmetric case”, Zeszyty Nauk. Wydz. Mat. Fiz. Chem., Mat. Gdansk, 6 (1987), 37–41 | Zbl

[8] Ulam S., Nereshennye matematicheskie zadachi, Nauka, M., 1964 | Zbl