@article{SM_2002_193_1_a2,
author = {B. D. Gel'man},
title = {Borsuk{\textendash}Ulam theorem in infinite-dimensional {Banach} spaces},
journal = {Sbornik. Mathematics},
pages = {83--91},
year = {2002},
volume = {193},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/}
}
B. D. Gel'man. Borsuk–Ulam theorem in infinite-dimensional Banach spaces. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/
[1] Dugundji J., Granas A., Fixed point theory, PWN, Warszawa, 1982 | MR | Zbl
[2] Steinlein H., “Borsuk's antipodal theorem and its generalizations and applications: a survey”, Méthodes topologiques en analyse non linéaire., Sémin. Math. Supér., Sémin. Sci. OTAN, 95, NATO Adv. Study Inst., 1985, 166–235 | MR | Zbl
[3] Granas A., “The theory of compact vector fields and some of its applications to the topology of functional spaces, I”, Rozprawy Mat., 30 (1962) | MR | Zbl
[4] Gelman B. D., “Teorema ob antipodakh v beskonechnomernom banakhovom prostranstve”, Sovremennyi analiz i ego prilozheniya, VZMSh-2000 (Voronezh, 2000), 63–64
[5] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[6] Dzedzej Z., “Equivariant selections and approximations”, Topological methods in nonlinear analysis (Gdansk, 1997), 25–31
[7] Izydorek M., “The Bourgin–Yang theorem for multi-valued maps in the nonsymmetric case”, Zeszyty Nauk. Wydz. Mat. Fiz. Chem., Mat. Gdansk, 6 (1987), 37–41 | Zbl
[8] Ulam S., Nereshennye matematicheskie zadachi, Nauka, M., 1964 | Zbl