Borsuk--Ulam theorem in infinite-dimensional Banach spaces
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 83-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known classical Borsuk–Ulam theorem has a broad range of applications to various problems. Its generalization to infinite-dimensional spaces runs across substantial difficulties because its statement is essentially finite-dimensional. A result established in the paper is a natural generalization of the Borsuk–Ulam theorem to infinite-dimensional Banach spaces. Applications of this theorem to various problems are discussed.
@article{SM_2002_193_1_a2,
     author = {B. D. Gel'man},
     title = {Borsuk--Ulam theorem in infinite-dimensional {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {193},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - Borsuk--Ulam theorem in infinite-dimensional Banach spaces
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 83
EP  - 91
VL  - 193
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/
LA  - en
ID  - SM_2002_193_1_a2
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T Borsuk--Ulam theorem in infinite-dimensional Banach spaces
%J Sbornik. Mathematics
%D 2002
%P 83-91
%V 193
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/
%G en
%F SM_2002_193_1_a2
B. D. Gel'man. Borsuk--Ulam theorem in infinite-dimensional Banach spaces. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a2/