@article{SM_2002_193_1_a0,
author = {A. I. Aptekarev},
title = {Sharp constants for rational approximations of analytic functions},
journal = {Sbornik. Mathematics},
pages = {1--72},
year = {2002},
volume = {193},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a0/}
}
A. I. Aptekarev. Sharp constants for rational approximations of analytic functions. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 1-72. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a0/
[1] Gonchar A. A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Trudy mezhdunarodnogo kongressa matematikov (Berkli, 1986), 1987, 739–748 | MR | Zbl
[2] Gonchar A. A., “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78(120):4 (1969), 640–654 | MR | Zbl
[3] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii analiticheskikh funktsii”, Tr. MIAN, 166, Nauka, M., 1984, 52–60 | MR | Zbl
[4] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matem. sb., 105(147):2 (1978), 147–163 | MR | Zbl
[5] Gonchar A. A., “Skorost ratsionalnoi approksimatsii i svoistvo odnoznachnosti analiticheskikh funktsii v okrestnosti izolirovannoi osoboi tochki”, Matem. sb., 94(136):2 (1974), 266–282
[6] Gonchar A. A., “Rational approximation of analytic functions”, Linear and complex analysis problems book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 471–474
[7] Gonchar A. A., Lopes G., “O teoreme Markova dlya mnogotochechnykh approksimatsii Pade”, Matem. sb., 105(147):4 (1978), 512–524 | MR | Zbl
[8] Gonchar A. A., Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167):1 (1984), 117–127 | MR
[9] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN, 157, Nauka, M., 1981, 31–48 | MR | Zbl
[10] Gonchar A. A., Rakhmanov E. A., “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4 (1985), 155–156 | MR | Zbl
[11] Gonchar A. A., Rakhmanov E. A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134:3 (1987), 306–352 | MR | Zbl
[12] Gonchar A. A., Rakhmanov E. A., Sorokin V. N., “Approksimatsii Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | MR | Zbl
[13] Shtal G., “Nailuchshie ravnomernye ratsionalnye approksimatsii $|x|$ na $[-1,1]$”, Matem. sb., 183:8 (1992), 85–118
[14] Stahl H., “Uniform rational approximation of $|x|$”, Methods of approximation theory in complex analysis and mathematical physics (Euler Institute, 1991), eds. A. A. Gonchar, E. B. Saff, Nauka, Moscow, 1992, 110–130 ; Lecture Notes in Math., 1550, Springer-Verlag, Berlin, 1993 | MR
[15] Stahl H., “Best uniform rational approximation of $x^\alpha$ on $[0,1]$”, Bull. Amer. Math. Soc., 28 (1993), 116–122 | DOI | MR | Zbl
[16] Cody M. J., Meinardus G., Varga R. S., “Chebyshev rational approximation to $e^{-x}$ on $[0,+\infty)$ and applications to heat-conduction problems”, J. Approx. Theory, 2 (1969), 50–65 | DOI | MR | Zbl
[17] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl
[18] Saff E. B., Varga R. S., “Some open questions concerning polynomial and rational functions”, Padé and rational approximation, eds. E. B. Saff, R. A. Varga, Academic Press, New York, 1977, 483–488 | MR
[19] Varga R. S., “Scientific computation on some mathematical conjectures”, Approximation theory V, Proc. 5th Int. Symp. (College Station, Tex. 1986), 1986, 191–209 | MR | Zbl
[20] Magnus A. P., CFGT determination of Varga's constant ‘1/9’, Inst. Preprint B-1348, Inst. Math. U. C. L., Belgium, 1986
[21] Magnus A. P., “On the use of Carathéodory–Fejér method for investigating ‘1/9’ and similar constants”, Nonlinear numerical methods and rational approximation, ed. A. Cuyt, D. Reidel, Dordrecht, 1988, 105–132 | MR | Zbl
[22] Magnus A. P., Meinguet L., “The elliptic functions and integrals of the ‘1/9’ problem”, Numer. Algorithms, 24 (2000), 117–139 ; http://www.math.ucl.ac.be/~magnus | DOI | MR | Zbl
[23] Halphen G. H., Traité des fonctions elliptiques et de leurs applications. I. Théorie des fonctions elliptiques et de leurs développements en séries, Gauthier-Villars, Paris, 1886 ; http://moa.cit.cornell.edu/ | Zbl
[24] Magnus A. P., “Asymptotics and super asymptotics of best rational approximation error norms for the exponential function (the ‘1/9’ problem) by the Carathéodory–Fejér method”, Nonlinear methods and rational approximation, V. II, ed. A. Cuyt, Kluwer Acad. Publ., Dordrecht, 1994, 173–185 | MR | Zbl
[25] Carpenter A. J., Ruttan A., Varga R. S., “Extended computations on the ‘1/9’ conjecture in rational approximation theory”, Lecture Notes in Math., 1105, 1984, 383–411 | MR | Zbl
[26] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for orthogonal polynomials”, Doc. Math. J. DMV, Extra Vol. ICM Berlin, 3 (1998), 491–501 | MR
[27] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[28] Saff E. B., Totik V., Logarithmic potentials with external fields, Springer, Berlin, 1997 | MR
[29] Stahl H., “Structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4 (1985), 339–356 | MR
[30] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. Approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl
[31] Gakhov F. D., Kraevye zadachi, GIFML, M., 1963
[32] Bernstein S. N., “Sur les polynomes orthogonaux relatifs à un segment fini. I; II”, J. Math. Pures Appl. (9), 9 (1930), 127–177 ; J. Math. Pures Appl. (9), 10 (1931), 219–286 | Zbl | Zbl
[33] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962
[34] Rakhmanov E. A., “Ob asimptoticheskikh svoistvakh mnogochlenov, ortogonalnykh na veschestvennoi osi”, Matem. sb., 119 (161):2 (1982), 163–203 | MR | Zbl
[35] Mhaskar H. N., Saff E. B., “Extremal problems for polynomials with exponential weights”, Trans. Amer. Math. Soc., 285 (1984), 203–234 | DOI | MR | Zbl
[36] Mhaskar H. N., Saff E. B., “Where does the sup norm of a weighted polynomial live?”, Constr. Approx., 1 (1985), 71–91 | DOI | MR | Zbl
[37] Nikishin E. M., “Asimptotika lineinykh form dlya sovmestnykh approksimatsii Pade”, Izv. vuzov. Ser. matem., 1986, no. 2, 33–41 | MR | Zbl
[38] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[39] Stahl H., Totik V., General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[40] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[41] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3 (1969), 127–232 | DOI | MR | Zbl
[42] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125:2 (1984), 231–258 | MR
[43] Lopez G., Szegö's theorem for polynomials orthogonal with respect to varying measures, Lecture Notes in Math., 1329, Springer-Verlag, Berlin, 1988 | MR | Zbl
[44] Aptekarev A. I., “Asimptotika polinomov sovmestnoi ortogonalnosti v sluchae Andzhelesko”, Matem. sb., 136(178):1(5) (1988), 56–84 | MR | Zbl
[45] Lubinsky D., Saff E., Strong asymptotics for extremal polynomials associated with exponential weights on $\mathbf R$, Lecture Notes in Math., 1305, Springer-Verlag, Berlin, 1988 | Zbl
[46] Lubinsky D. S., Strong asymptotics for extremal errors and polynomials associated with Erdös-type weights, Pitman Res. Notes Math. Ser., 202, Longman Scientific and Technical, Harlow, UK, 1989 | MR | Zbl
[47] Rakhmanov E. A., “Strong asymptotics for orthogonal polynomials”, Methods of approximation theory in complex analysis and mathematical physics, eds. A. A. Gonchar, E. B. Saff, Nauka, Moscow, 1992, 71–97 ; Lecture Notes in Math., 1550, Springer-Verlag, Berlin, 1993 | MR | Zbl
[48] Van Assche W., Geronimo J., “Asymptotics for orthogonal polynomials with regularly varying recurrence coefficients”, Rocky Mountain J. Math., 19 (1989), 39–49 | MR | Zbl
[49] Aptekarev A. I., “Silnaya asimptotika mnogochlenov sovmestnoi ortogonalnosti dlya sistem Nikishina”, Matem. sb., 190:5 (1999), 3–44 | MR | Zbl
[50] Aptekarev A., Stahl H., “Asymptotics of Hermite–Padé polynomials”, Progress in approximation theory, eds. A. Gonchar, E. B. Saff, Springer-Verlag, Berlin, 1992, 127–167 | MR | Zbl
[51] Aptekarev A. I., “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99 (1998), 423–448 | DOI | MR
[52] Totik V., Weighted approximation with varying weights, Lecture Notes in Math., 1569, Springer-Verlag, Berlin, 1994 | MR
[53] Totik V., “Orthogonal polynomials with respect to varying weights”, J. Comput. Appl. Math., 99 (1998), 373–386 | DOI | MR
[54] Stahl H., “Three different approaches to a proof of convergence for Padé approximants”, Rational approximation and its applications in mathematics and physics, Lecture Notes in Math., 1237, eds. J. Gilewicz, M. Pindor, W. Siemaszko, Springer-Verlag, Berlin, 1987 | MR | Zbl
[55] Nuttall J., “Padé polynomial asymptotics from a singular integral equation”, Constr. Approx., 6 (1990), 157–166 | DOI | MR | Zbl
[56] Magnus A. P., Nuttall J., On the constructive rational approximation of certain entire functions, http://www.crosswinds.net/~jnuttall/approx.htm
[57] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl
[58] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the mKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[59] Deift P., Orthogonal polynomials and random matrices: a Reimann–Hilbert approach, Reprint of the 1998 original, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[60] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Asymptotics for polynomials orthogonal with respect to varying exponential weights”, Internat. Math. Res. Notices, 16 (1997), 759–782 | DOI | MR | Zbl
[61] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1426 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[62] Deift P., Kriecherbauer T., McLaughlin K. T.-R., “New results on the equilibrium measure of logarithmic potentials in the presence of an external field”, J. Approx. Theory, 95 (1998), 388–475 | DOI | MR | Zbl
[63] Its A. R., Kitaev A. V., Fokas A. S., “Izomonodromnyi podkhod v teorii dvumernoi kvantovoi gravitatsii”, UMN, 45:6 (1990), 135–136 | MR | Zbl
[64] Akhiezer N. I., Lektsii po teorii approksimatsii, OGIZ–TTL, M.–L., 1947
[65] Aptekarev A. I., “Asimptotika ortogonalnykh mnogochlenov v okrestnosti kontsov intervala ortogonalnosti”, Matem. sb., 183:5 (1992), 43–62 | Zbl
[66] Tulyakov D. N., “O lokalnoi asimptotike otnosheniya ortogonalnykh polinomov v okrestnosti krainei tochki nositelya mery ortogonalnosti”, Matem. sb., 192:2 (2001), 139–160 | MR | Zbl
[67] Kuijlaars A. B. J., McLaughlin K. T.-R., Van Assche W., Vanlessen M., The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$, Preprint Katholike Universiteit Lenven, 2001; E-print arXiv: math.CA/0111252
[68] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR