Sharp constants for rational approximations of analytic functions
Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 1-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems describing the sharp constants for the approximation of a general class of analytic functions by rational functions are proved. Magnus's conjecture on the sharp constant for the approximation of $e^{-z}$ on $[0,\infty]$ is established as a consequence. For the proof of the theorems new formulae expressing the strong asymptotics of polynomials orthogonal with respect to a varying complex weight are obtained.
@article{SM_2002_193_1_a0,
     author = {A. I. Aptekarev},
     title = {Sharp constants for rational approximations of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {1--72},
     publisher = {mathdoc},
     volume = {193},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_1_a0/}
}
TY  - JOUR
AU  - A. I. Aptekarev
TI  - Sharp constants for rational approximations of analytic functions
JO  - Sbornik. Mathematics
PY  - 2002
SP  - 1
EP  - 72
VL  - 193
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2002_193_1_a0/
LA  - en
ID  - SM_2002_193_1_a0
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%T Sharp constants for rational approximations of analytic functions
%J Sbornik. Mathematics
%D 2002
%P 1-72
%V 193
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2002_193_1_a0/
%G en
%F SM_2002_193_1_a0
A. I. Aptekarev. Sharp constants for rational approximations of analytic functions. Sbornik. Mathematics, Tome 193 (2002) no. 1, pp. 1-72. http://geodesic.mathdoc.fr/item/SM_2002_193_1_a0/