Coxeter decompositions of hyperbolic simplexes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1867-1888
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A Coxeter decomposition of a polyhedron in a hyperbolic space $\mathbb H^n$ is a decomposition of it into finitely many Coxeter polyhedra such that any two tiles having a common facet are symmetric with respect to it. The classification of Coxeter decompositions is closely related to the problem of the classification of finite-index subgroups generated by reflections in discrete hyperbolic groups generated by reflections. All Coxeter decompositions of simplexes in the hyperbolic spaces $\mathbb H^n$ with $n>3$ are described in this paper.
			
            
            
            
          
        
      @article{SM_2002_193_12_a5,
     author = {A. A. Felikson},
     title = {Coxeter decompositions of hyperbolic simplexes},
     journal = {Sbornik. Mathematics},
     pages = {1867--1888},
     publisher = {mathdoc},
     volume = {193},
     number = {12},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2002_193_12_a5/}
}
                      
                      
                    A. A. Felikson. Coxeter decompositions of hyperbolic simplexes. Sbornik. Mathematics, Tome 193 (2002) no. 12, pp. 1867-1888. http://geodesic.mathdoc.fr/item/SM_2002_193_12_a5/
