Some generalizations of Macaulay's combinatorial theorem for residue rings
Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1399-1416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the characterization of the Hilbert functions of homogeneous ideals of a polynomial ring containing a fixed monomial ideal $I$ is considered. Macaulay's result for the polynomial ring is generalized to the case of residue rings modulo some monomial ideals. In particular, necessary and sufficient conditions on an ideal $I$ for Macaulay's theorem to hold are presented in two cases: when $I$ is an ideal of the polynomial ring in two variables and when $I$ is generated by a lexsegment. Macaulay's theorem is also proved for a wide variety of cases when $I$ is generated by monomials in the two largest variables in the lexicographic ordering. In addition, an equivalent formulation of Macaulay's theorem and conditions on the ideal $I$ required for a generalization of this theorem are given.
@article{SM_2001_192_9_a6,
     author = {D. A. Shakin},
     title = {Some generalizations of {Macaulay's} combinatorial theorem for residue rings},
     journal = {Sbornik. Mathematics},
     pages = {1399--1416},
     year = {2001},
     volume = {192},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_9_a6/}
}
TY  - JOUR
AU  - D. A. Shakin
TI  - Some generalizations of Macaulay's combinatorial theorem for residue rings
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1399
EP  - 1416
VL  - 192
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_9_a6/
LA  - en
ID  - SM_2001_192_9_a6
ER  - 
%0 Journal Article
%A D. A. Shakin
%T Some generalizations of Macaulay's combinatorial theorem for residue rings
%J Sbornik. Mathematics
%D 2001
%P 1399-1416
%V 192
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2001_192_9_a6/
%G en
%F SM_2001_192_9_a6
D. A. Shakin. Some generalizations of Macaulay's combinatorial theorem for residue rings. Sbornik. Mathematics, Tome 192 (2001) no. 9, pp. 1399-1416. http://geodesic.mathdoc.fr/item/SM_2001_192_9_a6/

[1] Macaulay F. S., “Some properties of enumeration in the theory of modular systems”, Proc. London Math. Soc., 26 (1927), 531–555 | DOI | Zbl

[2] Clements G. F., Lindström B., “A generalization of a combinatorial theorem of Macaulay”, J. Combin. Theory, 7 (1969), 230–238 | DOI | MR | Zbl

[3] De Negri E., Herzog J., “Completely lexsegment ideals”, Proc. Amer. Math. Soc., 126 (1998), 3467–3473 | DOI | MR | Zbl

[4] Eliahou S., Kervaire M., “Minimal resolutions of some monomial ideals”, J. Algebra, 129 (1990), 1–25 | DOI | MR | Zbl