Periodic differential equations with self-adjoint monodromy operator
Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 455-478
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear differential equation $\dot u=A(t)u$ with $p$-periodic (generally speaking, unbounded) operator coefficient in a Euclidean or a Hilbert space $\mathbb H$ is considered. It is proved under natural constraints that the monodromy operator $U_p$ is self-adjoint and strictly positive if $A^*(-t)=A(t)$ for all $t\in\mathbb R$. It is shown that Hamiltonian systems in the class under consideration are usually unstable and, if they are stable, then the operator $U_p$ reduces to the identity and all solutions are $p$-periodic. For higher frequencies averaged equations are derived. Remarkably, high-frequency modulation may double the number of critical values. General results are applied to rotational flows with cylindrical components of the velocity $a_r=a_z=0$, $a_\theta=\lambda c(t)r^\beta$, $\beta<-1$, $c(t)$ is an even $p$-periodic function, and also to several problems of free gravitational convection of fluids in periodic fields.
@article{SM_2001_192_3_a6,
     author = {V. I. Yudovich},
     title = {Periodic differential equations with self-adjoint monodromy operator},
     journal = {Sbornik. Mathematics},
     pages = {455--478},
     year = {2001},
     volume = {192},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_3_a6/}
}
TY  - JOUR
AU  - V. I. Yudovich
TI  - Periodic differential equations with self-adjoint monodromy operator
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 455
EP  - 478
VL  - 192
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_3_a6/
LA  - en
ID  - SM_2001_192_3_a6
ER  - 
%0 Journal Article
%A V. I. Yudovich
%T Periodic differential equations with self-adjoint monodromy operator
%J Sbornik. Mathematics
%D 2001
%P 455-478
%V 192
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2001_192_3_a6/
%G en
%F SM_2001_192_3_a6
V. I. Yudovich. Periodic differential equations with self-adjoint monodromy operator. Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 455-478. http://geodesic.mathdoc.fr/item/SM_2001_192_3_a6/

[1] Yudovich V. I., Periodicheskie differentsialnye uravneniya s samosopryazhennym operatorom monodromii, I, Dep. v VINITI. 16.11.1998. No 3309-B98

[2] Yudovich V. I., Periodicheskie differentsialnye uravneniya s samosopryazhennym operatorom monodromii, II, Dep. v VINITI. 25.11.1998. No 3451-B98

[3] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[4] Loevner K., “On totally positive matrices”, Math. Z., 63:3 (1955), 338–340 | DOI | MR

[5] Yudovich V. I., “Spektralnye svoistva evolyutsionnogo operatora parabolicheskogo uravneniya s odnoi prostranstvennoi peremennoi i ego konechnomernykh analogov”, UMN, 32:1 (1977), 230–232

[6] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[7] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[8] Simonenko I. B., Metod usredneniya v teorii nelineinykh uravnenii parabolicheskogo tipa s prilozheniem k zadacham gidrodinamicheskoi ustoichivosti, Izd-vo Rostovskogo un-ta, Rostov-na-Donu, 1989 | Zbl

[9] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR | Zbl

[10] Funktsionalnyi analiz, ed. Krein S. G., Nauka, M., 1972 | MR | Zbl

[11] Postnikov M. M., Lektsii po geometrii. Semestr II. Lineinaya algebra i differentsialnaya geometriya, Nauka, M., 1979 | MR

[12] Arnold V. I., “Reversible systems”, Nonlinear and turbulent processes in physics, V. 3, Harwood Acad. Publ., Chur, 1984, 1161–1174 ; Арнольд В. И., “Обратимые системы”, Избранное-60, Фазис, М., 1997, 355–363 | MR | MR

[13] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977 | MR | Zbl

[14] Karapetyants N. K., Samko S. G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izd-vo Rostovskogo un-ta, Rostov-na-Donu, 1988 | MR | Zbl

[15] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[16] Zenkovskaya S. M., Simonenko I. B., “O vliyanii vibratsii vysokoi chastoty na vozniknovenie konvektsii”, Izv. AN SSSR. MZhG, 1966, no. 5, 51–56

[17] Yudovich V. I., “Primer poteri ustoichivosti i rozhdeniya vtorichnogo techeniya zhidkosti v zamknutom sosude”, Matem. sb., 74 (116):4 (1967), 565–579 | MR | Zbl

[18] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo Rostovskogo un-ta, Rostov-na-Donu, 1984 ; Yudovich V. I., The linearization method in hydrodynamical stability theory, Transl. Math. Monographs, 74, Amer. Math. Soc., Providence, RI, 1989 | Zbl | MR | Zbl

[19] Dzhozef D., Ustoichivost dvizhenii zhidkosti, Mir, M., 1981