Sobolev's embedding theorem for a domain with irregular boundary
Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 323-346

Voir la notice de l'article provenant de la source Math-Net.Ru

In Sobolev's embedding theorem, $W_p^s(G)\subset L_q(G)$ the relations between admissible smoothness parameters and integrability parameters are determined by the geometric properties of the domain $G$. In the present paper this result and the corresponding estimates of weak type are established for domains with irregular boundaries and in the case of weighted $L_p$$L_q$-spaces.
@article{SM_2001_192_3_a0,
     author = {O. V. Besov},
     title = {Sobolev's embedding theorem for a domain with irregular boundary},
     journal = {Sbornik. Mathematics},
     pages = {323--346},
     publisher = {mathdoc},
     volume = {192},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_3_a0/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Sobolev's embedding theorem for a domain with irregular boundary
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 323
EP  - 346
VL  - 192
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_3_a0/
LA  - en
ID  - SM_2001_192_3_a0
ER  - 
%0 Journal Article
%A O. V. Besov
%T Sobolev's embedding theorem for a domain with irregular boundary
%J Sbornik. Mathematics
%D 2001
%P 323-346
%V 192
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_3_a0/
%G en
%F SM_2001_192_3_a0
O. V. Besov. Sobolev's embedding theorem for a domain with irregular boundary. Sbornik. Mathematics, Tome 192 (2001) no. 3, pp. 323-346. http://geodesic.mathdoc.fr/item/SM_2001_192_3_a0/