@article{SM_2001_192_1_a6,
author = {S. A. Stepin},
title = {Wave operators for the linearized {Boltzmann} equation in one-speed transport theory},
journal = {Sbornik. Mathematics},
pages = {141--162},
year = {2001},
volume = {192},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/}
}
S. A. Stepin. Wave operators for the linearized Boltzmann equation in one-speed transport theory. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 141-162. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/
[1] Karleman T., Matematicheskie zadachi kineticheskoi teorii gazov, IL, M., 1960
[2] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR
[3] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa neitronov”, Tr. MIAN, 61, Nauka, M., 1961, 3–158 | MR
[4] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR
[5] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972
[6] Shikhov S. B., Voprosy matematicheskoi teorii reaktorov. Lineinyi analiz, Atomizdat, M., 1973
[7] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, Mir, M., 1982 | MR
[8] Lehner J., “The spectrum of the neutron transport operator for the infinite slab”, J. Math. Mech., 11:2 (1962), 173–181 | MR | Zbl
[9] Lehner J., Wing G. M., “On the spectrum of an unsymmetric operator arising in the transport theory of neutrons”, Comm. Pure Appl. Math., 8 (1955), 217–234 | DOI | MR | Zbl
[10] Lehner J., Wing G. M., “Solution of the linearized Boltzmann transport equation for the slab geometry”, Duke Math. J., 23 (1956), 125–142 | DOI | MR | Zbl
[11] Kuperin Yu. A., Naboko S. N., Romanov R. V., “Spektralnyi analiz odnoskorostnogo operatora perenosa i funktsionalnaya model”, Funkts. analiz i ego prilozh., 33:3 (1999), 47–58 | MR | Zbl
[12] Stepin S. A., Vozmuschenie spektra i zadacha rasseyaniya v odnoskorostnoi teorii perenosa, Dep. v VINITI. 07.02.2000. No285-V00, Moskva, 2000 | Zbl
[13] Kato T., “Wave operators and similarity for some non-selfadjoint operators”, Math. Ann., 162 (1966), 258–279 | DOI | MR | Zbl
[14] Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Tr. MIAN, 147, Nauka, M., 1980, 86–114 | MR | Zbl
[15] Stepin S. A., “Vozmuschenie spektra i volnovye operatory v lineinoi teorii perenosa”, UMN, 54:5 (1999), 175–176 | MR | Zbl
[16] Sëkefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR
[17] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 3, Mir, M., 1982
[18] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR. Ser. matem., 39:1 (1975), 123–148 | MR | Zbl
[19] Pavlov B. S., “Samosopryazhennaya dilatatsiya dissipativnogo operatora Shrëdingera i razlozhenie po ego sobstvennym funktsiyam”, Matem. sb., 102(144):4 (1977), 511–536 | MR | Zbl
[20] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963
[21] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl