Wave operators for the linearized Boltzmann equation in one-speed transport theory
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 141-162

Voir la notice de l'article provenant de la source Math-Net.Ru

A dissipative integro-differential operator $L$ arising in the linearization of Boltzmann's equation in one-speed particle transport theory is considered. Under assumptions ensuring that the point spectrum of $L$ is finite a scalar multiple of the characteristic functions of $L$ is found and a condition for the absence of spectral singularities is indicated. Using the techniques of non-stationary scattering theory and the Sz.-Nagy–Foias functional model direct and inverse wave operators with the completeness property are constructed. The structure of the operator $L$ in the invariant subspace corresponding to its continuous spectrum is studied.
@article{SM_2001_192_1_a6,
     author = {S. A. Stepin},
     title = {Wave operators for the linearized {Boltzmann} equation in one-speed transport theory},
     journal = {Sbornik. Mathematics},
     pages = {141--162},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Wave operators for the linearized Boltzmann equation in one-speed transport theory
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 141
EP  - 162
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/
LA  - en
ID  - SM_2001_192_1_a6
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Wave operators for the linearized Boltzmann equation in one-speed transport theory
%J Sbornik. Mathematics
%D 2001
%P 141-162
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/
%G en
%F SM_2001_192_1_a6
S. A. Stepin. Wave operators for the linearized Boltzmann equation in one-speed transport theory. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 141-162. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/