Wave operators for the linearized Boltzmann equation in one-speed transport theory
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 141-162
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A dissipative integro-differential operator $L$ arising in the linearization of Boltzmann's equation in one-speed particle transport theory is considered. Under assumptions ensuring that the point spectrum of $L$ is finite a scalar multiple of the characteristic functions of $L$ is found and a condition for the absence of spectral singularities is indicated. Using the techniques of non-stationary scattering theory and the Sz.-Nagy–Foias functional model direct and inverse wave operators with the completeness property are constructed. The structure of the operator $L$ in the invariant subspace corresponding to its continuous spectrum is studied.
@article{SM_2001_192_1_a6,
     author = {S. A. Stepin},
     title = {Wave operators for the linearized {Boltzmann} equation in one-speed transport theory},
     journal = {Sbornik. Mathematics},
     pages = {141--162},
     year = {2001},
     volume = {192},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Wave operators for the linearized Boltzmann equation in one-speed transport theory
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 141
EP  - 162
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/
LA  - en
ID  - SM_2001_192_1_a6
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Wave operators for the linearized Boltzmann equation in one-speed transport theory
%J Sbornik. Mathematics
%D 2001
%P 141-162
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/
%G en
%F SM_2001_192_1_a6
S. A. Stepin. Wave operators for the linearized Boltzmann equation in one-speed transport theory. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 141-162. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a6/

[1] Karleman T., Matematicheskie zadachi kineticheskoi teorii gazov, IL, M., 1960

[2] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[3] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa neitronov”, Tr. MIAN, 61, Nauka, M., 1961, 3–158 | MR

[4] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[5] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[6] Shikhov S. B., Voprosy matematicheskoi teorii reaktorov. Lineinyi analiz, Atomizdat, M., 1973

[7] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, Mir, M., 1982 | MR

[8] Lehner J., “The spectrum of the neutron transport operator for the infinite slab”, J. Math. Mech., 11:2 (1962), 173–181 | MR | Zbl

[9] Lehner J., Wing G. M., “On the spectrum of an unsymmetric operator arising in the transport theory of neutrons”, Comm. Pure Appl. Math., 8 (1955), 217–234 | DOI | MR | Zbl

[10] Lehner J., Wing G. M., “Solution of the linearized Boltzmann transport equation for the slab geometry”, Duke Math. J., 23 (1956), 125–142 | DOI | MR | Zbl

[11] Kuperin Yu. A., Naboko S. N., Romanov R. V., “Spektralnyi analiz odnoskorostnogo operatora perenosa i funktsionalnaya model”, Funkts. analiz i ego prilozh., 33:3 (1999), 47–58 | MR | Zbl

[12] Stepin S. A., Vozmuschenie spektra i zadacha rasseyaniya v odnoskorostnoi teorii perenosa, Dep. v VINITI. 07.02.2000. No285-V00, Moskva, 2000 | Zbl

[13] Kato T., “Wave operators and similarity for some non-selfadjoint operators”, Math. Ann., 162 (1966), 258–279 | DOI | MR | Zbl

[14] Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Tr. MIAN, 147, Nauka, M., 1980, 86–114 | MR | Zbl

[15] Stepin S. A., “Vozmuschenie spektra i volnovye operatory v lineinoi teorii perenosa”, UMN, 54:5 (1999), 175–176 | MR | Zbl

[16] Sëkefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[17] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 3, Mir, M., 1982

[18] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR. Ser. matem., 39:1 (1975), 123–148 | MR | Zbl

[19] Pavlov B. S., “Samosopryazhennaya dilatatsiya dissipativnogo operatora Shrëdingera i razlozhenie po ego sobstvennym funktsiyam”, Matem. sb., 102(144):4 (1977), 511–536 | MR | Zbl

[20] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[21] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl