Type number and rigidity of fibred surfaces
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 65-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Infinitesimal $l$-th order bendings, $1\leqslant l\leqslant\infty$, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for $l=\infty$ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the $(r,l)$-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an $(r,l)$-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number $\geqslant 3$ and the class of $(r,l)$-rigid fibred surfaces is distinguished.
@article{SM_2001_192_1_a3,
     author = {P. E. Markov},
     title = {Type number and rigidity of fibred surfaces},
     journal = {Sbornik. Mathematics},
     pages = {65--87},
     year = {2001},
     volume = {192},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/}
}
TY  - JOUR
AU  - P. E. Markov
TI  - Type number and rigidity of fibred surfaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 65
EP  - 87
VL  - 192
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/
LA  - en
ID  - SM_2001_192_1_a3
ER  - 
%0 Journal Article
%A P. E. Markov
%T Type number and rigidity of fibred surfaces
%J Sbornik. Mathematics
%D 2001
%P 65-87
%V 192
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/
%G en
%F SM_2001_192_1_a3
P. E. Markov. Type number and rigidity of fibred surfaces. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 65-87. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/

[1] Beez R., “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung”, Zeitschr. f. Math. u. Phys., 20 (1875), 423–444

[2] Beez R., “Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höherer Ordnung”, Zeitschr. f. Math. u. Phys., 21 (1876), 373–401

[3] Allendoerfer C. B., “Rigidity for spaces class greater than one”, Amer. J. Math., 1939, no. 61, 633–644 | DOI | MR | Zbl

[4] Markov P. E., “Beskonechno malye izgibaniya nekotorykh mnogomernykh poverkhnostei”, Matem. zametki, 27:3 (1980), 469–479 | MR | Zbl

[5] Markov P. E., “Beskonechno malye izgibaniya odnogo klassa mnogomernykh poverkhnostei s kraem”, Matem. sb., 121:1 (1983), 48–59 | MR

[6] Markov P. E., “Beskonechno malye izgibaniya vysshikh poryadkov mnogomernykh poverkhnostei v prostranstvakh postoyannoi krivizny”, Matem. sb., 133:1 (1987), 64–85 | MR | Zbl

[7] Sabitov I. Kh., “Lokalnaya teoriya izgibanii poverkhnostei”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 48, VINITI, M., 1989, 196–270 | MR

[8] Perepelkin D. I., “Krivizna i normalnye prostranstva mnogoobraziya $V_m$ v $R_n$”, Matem. sb., 42:1 (1935), 81–120 | Zbl

[9] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[10] Chern S.-S., Osserman R., “Remarks on the Riemannian of a minimal submanifolds”, Geometry. Proc. Symp. (Utrecht 1980), Lect. Notes in Math., 894, 1981, 49–90 | MR | Zbl

[11] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii, I”, Izv. vuzov. Ser. matem., 1997, no. 9, 21–34 | MR | Zbl

[12] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii, II”, Izv. vuzov. Ser. matem., 1997, no. 11, 41–51 | MR | Zbl

[13] Markov P. E., “Beskonechno malye izgibaniya vysshikh poryadkov mnogomernykh poverkhnostei”, Ukr. geom. sb., 1982, no. 25, 87–94 | Zbl

[14] Kartan E., Geometriya rimanovykh prostranstv, ONTI NKTP SSSR, M.–L., 1936

[15] Sindzh Dzh. L., Tenzornye metody v dinamike, IL, M., 1947

[16] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948

[17] Efimov N. V., “Nekotorye predlozheniya o zhestkosti i neizgibaemosti”, UMN, 7:5 (1952), 215–224 | MR | Zbl

[18] Postnikov M. M., Lektsii po geometrii. Semestr 5. Gruppy Li, Nauka, M., 1982