Type number and rigidity of fibred surfaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 65-87
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Infinitesimal $l$-th order bendings, $1\leqslant l\leqslant\infty$, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for $l=\infty$ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the $(r,l)$-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an $(r,l)$-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number $\geqslant 3$ and the class of $(r,l)$-rigid fibred surfaces is distinguished.
			
            
            
            
          
        
      @article{SM_2001_192_1_a3,
     author = {P. E. Markov},
     title = {Type number and rigidity of fibred surfaces},
     journal = {Sbornik. Mathematics},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/}
}
                      
                      
                    P. E. Markov. Type number and rigidity of fibred surfaces. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 65-87. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/
