Type number and rigidity of fibred surfaces
Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 65-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Infinitesimal $l$-th order bendings, $1\leqslant l\leqslant\infty$, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for $l=\infty$ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the $(r,l)$-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an $(r,l)$-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number $\geqslant 3$ and the class of $(r,l)$-rigid fibred surfaces is distinguished.
@article{SM_2001_192_1_a3,
     author = {P. E. Markov},
     title = {Type number and rigidity of fibred surfaces},
     journal = {Sbornik. Mathematics},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/}
}
TY  - JOUR
AU  - P. E. Markov
TI  - Type number and rigidity of fibred surfaces
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 65
EP  - 87
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/
LA  - en
ID  - SM_2001_192_1_a3
ER  - 
%0 Journal Article
%A P. E. Markov
%T Type number and rigidity of fibred surfaces
%J Sbornik. Mathematics
%D 2001
%P 65-87
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/
%G en
%F SM_2001_192_1_a3
P. E. Markov. Type number and rigidity of fibred surfaces. Sbornik. Mathematics, Tome 192 (2001) no. 1, pp. 65-87. http://geodesic.mathdoc.fr/item/SM_2001_192_1_a3/