Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1741-1761
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Strictly pseudoconvex non-spherical hypersurfaces in 3-dimensional complex space that are homogeneous with respect to local Lie groups of holomorphic transformations are studied. The author proved earlier that a Lie group $\operatorname{Aut}M$ acting transitively  on such a manifold $M$ has dimension at most 7.
A complete list of homogeneous surfaces such that $\operatorname{Aut}M$ has dimension precisely 7 (and the corresponding isotropy subgroup has dimension precisely 2) is given. The main tools used in the paper are local normal equations describing the manifolds under consideration.
			
            
            
            
          
        
      @article{SM_2001_192_12_a0,
     author = {A. V. Loboda},
     title = {Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups},
     journal = {Sbornik. Mathematics},
     pages = {1741--1761},
     publisher = {mathdoc},
     volume = {192},
     number = {12},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/}
}
                      
                      
                    TY - JOUR AU - A. V. Loboda TI - Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups JO - Sbornik. Mathematics PY - 2001 SP - 1741 EP - 1761 VL - 192 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/ LA - en ID - SM_2001_192_12_a0 ER -
A. V. Loboda. Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups. Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1741-1761. http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/
