Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups
Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1741-1761

Voir la notice de l'article provenant de la source Math-Net.Ru

Strictly pseudoconvex non-spherical hypersurfaces in 3-dimensional complex space that are homogeneous with respect to local Lie groups of holomorphic transformations are studied. The author proved earlier that a Lie group $\operatorname{Aut}M$ acting transitively on such a manifold $M$ has dimension at most 7. A complete list of homogeneous surfaces such that $\operatorname{Aut}M$ has dimension precisely 7 (and the corresponding isotropy subgroup has dimension precisely 2) is given. The main tools used in the paper are local normal equations describing the manifolds under consideration.
@article{SM_2001_192_12_a0,
     author = {A. V. Loboda},
     title = {Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups},
     journal = {Sbornik. Mathematics},
     pages = {1741--1761},
     publisher = {mathdoc},
     volume = {192},
     number = {12},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1741
EP  - 1761
VL  - 192
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/
LA  - en
ID  - SM_2001_192_12_a0
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups
%J Sbornik. Mathematics
%D 2001
%P 1741-1761
%V 192
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/
%G en
%F SM_2001_192_12_a0
A. V. Loboda. Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups. Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1741-1761. http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/