Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups
Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1741-1761 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Strictly pseudoconvex non-spherical hypersurfaces in 3-dimensional complex space that are homogeneous with respect to local Lie groups of holomorphic transformations are studied. The author proved earlier that a Lie group $\operatorname{Aut}M$ acting transitively on such a manifold $M$ has dimension at most 7. A complete list of homogeneous surfaces such that $\operatorname{Aut}M$ has dimension precisely 7 (and the corresponding isotropy subgroup has dimension precisely 2) is given. The main tools used in the paper are local normal equations describing the manifolds under consideration.
@article{SM_2001_192_12_a0,
     author = {A. V. Loboda},
     title = {Homogeneous strictly pseudoconvex hypersurfaces in~$\mathbb C^3$ with two-dimensional isotropy groups},
     journal = {Sbornik. Mathematics},
     pages = {1741--1761},
     year = {2001},
     volume = {192},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1741
EP  - 1761
VL  - 192
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/
LA  - en
ID  - SM_2001_192_12_a0
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups
%J Sbornik. Mathematics
%D 2001
%P 1741-1761
%V 192
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/
%G en
%F SM_2001_192_12_a0
A. V. Loboda. Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb C^3$ with two-dimensional isotropy groups. Sbornik. Mathematics, Tome 192 (2001) no. 12, pp. 1741-1761. http://geodesic.mathdoc.fr/item/SM_2001_192_12_a0/

[1] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes”, Ann. Mat. Pura Appl. (4), 11 (1932), 17–90 | MR | Zbl

[2] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | MR | Zbl

[3] Morimoto A., Nagano T., “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15:3 (1963), 289–300 | MR | Zbl

[4] Rossi H., “Homogeneous strongly pseudoconvex hypersurfaces”, Rice Univ. Studies, 59:1 (1973), 131–145 | MR | Zbl

[5] Takagi R., “On homogeneous real hypersurfaces in a complex projective space”, Osaka J. Math., 19 (1973), 495–506 | MR

[6] Azad H., Huckleberry A., Richthofer W., “Homogeneous CR manifolds”, J. Reine Angew. Math., 358 (1985), 125–154 | MR | Zbl

[7] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR

[8] Loboda A. V., “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb C^3$”, Funkts. analiz i ego prilozh., 33:1 (1999), 68–71 | MR | Zbl

[9] Winkelmann J., The classification of 3-dimensional homogeneous complex manifolds, Lecture Notes in Math., 1062, Springer-Verlag, Berlin, 1995 | MR | Zbl

[10] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Voronezhskaya zimnyaya matem. shkola, Tezisy dokladov (Voronezh, 2000), 111–112

[11] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^3$ s “bolshimi” gruppami izotropii”, Mezhdunarodnaya shkola-seminar, posvyaschennaya 90-letiyu N. V. Efimova, Tezisy dokladov (Abrau-Dyurso, 2000), 105–106

[12] Kaup W., “Reelle Transformationsgruppen und invariante Metriken auf komplexen Raumen”, Invent. Math., 3 (1967), 43–70 | DOI | MR | Zbl

[13] Beloshapka V. K., “Odnorodnye giperpoverkhnosti v $\mathbb C^2$”, Matem. zametki, 60:5 (1996), 760–764 | MR | Zbl

[14] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb C^2$”, Matem. zametki, 59:2 (1996), 211–223 | MR | Zbl

[15] Loboda A. V., “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego prilozh., 34:2 (2000), 33–42 | MR | Zbl

[16] Loboda A. V., “Ob opredelenii affinno-odnorodnoi sedlovidnoi poverkhnosti prostranstva $\mathbb R^3$ po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 65:5 (1999), 793–796 | MR

[17] Eastwood M., Ezhov V. V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl

[18] Doubrov B., Komrakov B., Rabinovich M., Homogeneous surfaces in the 3-dimensional affine geometry, Prepr. Ser. Pure Math. No 4, Inst. Math. Univ. Oslo, 1995, p. 1–26

[19] Ezhov V. V., Loboda A. V., Shmalts G., “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb C^3$”, Matem. zametki, 66:4 (1999), 624–626 | MR

[20] Webster S. M., “On the Moser normal form at a nonumbilic point”, Math. Ann., 233:2 (1978), 97–102 | DOI | MR | Zbl

[21] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl

[22] Loboda A. V., “O lokalnykh avtomorfizmakh veschestvenno-analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:3 (1981), 620–645 | MR | Zbl

[23] Ezhov V. V., “Linearizatsiya gruppy stabilnosti odnogo klassa giperpoverkhnostei”, UMN, 41:3 (1986), 181–182 | MR | Zbl

[24] Loboda A. V., “O normalnykh formakh nesfericheskikh poverkhnostei”, Materialy Vsesoyuznoi shkoly po teorii funktsii (Kemerovo, 1983), 65; Деп. в ВИНИТИ. No3254-84, 1984

[25] Beloshapka V. K., “O razmernosti grupp avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 243–266 | MR | Zbl

[26] Montgomery D., Zippin L., Topological transformation groups, Interscience Publ., New York, 1955 | MR | Zbl

[27] Stanton N. K., “A normal form for rigid hypersurfaces in $\mathbb C^2$”, Amer. J. Math., 113:5 (1991), 877–910 | DOI | MR | Zbl

[28] Stanton N. K., “Infinitesimal CR automorphisms of rigid hypersurfaces”, Amer. J. Math., 117:1 (1995), 141–167 | DOI | MR | Zbl

[29] Zaitsev D., “Germs of local automorphisms of real-analytic CR structures and dependence on $k$-jets”, Math. Res. Lett., 4:6 (1997), 823–842 | MR | Zbl