Infinite iterated power with alternating coefficients
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1589-1620
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let
$$
f(z)=z^{\beta\cdot z^{z^{\beta\cdot z^{z^{\beta\cdot z^{\dotsb}}}}}}
$$
where $\beta\in\mathbb C$ and $|\beta|>1$, be an infinite iterated power. Then $f(z)$ is a holomorphic function in some domain $U\supset e^K\cap\{z:|{\arg z}|\pi\}$, where $e^K$ is the image of the disc $K=\{w:|w|$ of radius defined by the formula $1/R=\sqrt{|\beta|}\cdot\exp((1+t^2)/(1-t^2))$ and $t=t(\sqrt{|\beta|}\,)\in[0,1)$ is the solution of the equation $\sqrt{|\beta|}=\dfrac{1+t}{1-t}\cdot\exp(2t/(1-t^2))$.
			
            
            
            
          
        
      @article{SM_2001_192_11_a0,
     author = {A. P. Bulanov},
     title = {Infinite iterated power with alternating coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1589--1620},
     publisher = {mathdoc},
     volume = {192},
     number = {11},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/}
}
                      
                      
                    A. P. Bulanov. Infinite iterated power with alternating coefficients. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1589-1620. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/
