@article{SM_2001_192_11_a0,
author = {A. P. Bulanov},
title = {Infinite iterated power with alternating coefficients},
journal = {Sbornik. Mathematics},
pages = {1589--1620},
year = {2001},
volume = {192},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/}
}
A. P. Bulanov. Infinite iterated power with alternating coefficients. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1589-1620. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/
[1] Euler L., “De formulis exponentialibus replicatis”, Acta Acad. Sci. Petr., 1 (1778), 38–60
[2] Knoebel A., “Exponentials reiterated”, Amer. Math. Monthly, 88:4 (1981), 235–252 | DOI | MR | Zbl
[3] Maurer H., “Über die Funktion $y=x^{[x^{[x^{(\dotsb)}]}]}$ für ganzzahliges Argument (Abundanzen)”, Mitt. Math. Ges. Hamburg, 4 (1901), 33–50 | Zbl
[4] Barrow D. F., “Infinite exponentials”, Amer. Math. Monthly, 43 (1936), 150–160 | DOI | MR | Zbl
[5] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968 | MR
[6] Bulanov A. P., “Regulyarnost stepenei beskonechnoi kratnosti”, Izv. RAN. Ser. matem., 62:5 (1998), 49–78 | MR | Zbl
[7] Bulanov A. P., “Dvizhenie odnoi dinamicheskoi sistemy”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 10-i Saratovskoi zimnei shkoly (27 yanvarya – 2 fevralya 2000 g.), 24–25
[8] Bender C. M., Orszag S. A., Advanced mathematical methods for scientists and engineers, McGraw-Hill, New York, 1978 | MR | Zbl
[9] Bulanov A. P., “Kratnye stepeni i lokalnye priblizheniya”, Tr. MIAN, 180, Nauka, M., 1987, 65–67
[10] Bulanov A. P., “O skhodimosti kratnoi stepeni, yavlyayuscheisya resheniem nelineinogo differentsialnogo uravneniya”, Algebra i analiz, Materialy konferentsii, posvyaschennoi 100-letiyu B. M. Gagaeva (16–22 iyunya 1997 g., Kazan), 40–41
[11] Bulanov A. P., “O stepeni beskonechnoi kratnosti s koeffitsientami, imeyuschimi poocheredno dva znacheniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 9-i Saratovskoi zimnei shkoly (26 yanvarya – 1 fevralya 1998 g.), 31
[12] Bulanov A. P., “Beskonechnokratnye stepeni i nekotorye kombinatornye tozhdestva”, Sovremennye metody teorii funktsii i smezhnye problemy, Tezisy dokladov Voronezhskoi zimnei matem. shkoly (27 yanvarya – 4 fevralya 1999 g.), 16
[13] Ambartsumyan G. A., Burobin A. V., “O prodolzhenii funktsii, predstavlyaemykh eksponentami beskonechnoi kratnosti”, Sovremennye metody teorii funktsii i smezhnye problemy, Tezisy dokladov Voronezhskoi zimnei matem. shkoly (27 yanvarya – 4 fevralya 1999 g.), 16
[14] Bulanov A. P., “Skhodimost resheniya nelineinogo differentsialnogo uravneniya, predstavlennogo beskonechnokratnoi stepenyu”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy konferentsii, posvyaschennoi 130-letiyu so dnya rozhdeniya D. F. Egorova (Kazan, 1999 g.), 49–50
[15] Fatou P., “Series trigonometriques et series de Taylor”, Acta Math., 30 (1906), 335–400 | DOI | MR | Zbl
[16] Szego G., “Über Potenzreihen mit endlich vielen verschiedenen Koeffizienten”, Sitzungsber. Preuss. Akad. Wiss. Math.-Phys. Kl., 1922, 88–91 | Zbl
[17] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR
[18] Kombinatornyi analiz. Zadachi i uprazhneniya: Uchebnoe posobie, ed. Rybnikov K. A., Nauka, M., 1982 | MR | Zbl
[19] Spravochnik po spetsialnym funktsiyam, ed. Abramovits M., Stigan I., Nauka, M., 1979 | MR