Infinite iterated power with alternating coefficients
Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1589-1620

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $$ f(z)=z^{\beta\cdot z^{z^{\beta\cdot z^{z^{\beta\cdot z^{\dotsb}}}}}} $$ where $\beta\in\mathbb C$ and $|\beta|>1$, be an infinite iterated power. Then $f(z)$ is a holomorphic function in some domain $U\supset e^K\cap\{z:|{\arg z}|\pi\}$, where $e^K$ is the image of the disc $K=\{w:|w|$ of radius defined by the formula $1/R=\sqrt{|\beta|}\cdot\exp((1+t^2)/(1-t^2))$ and $t=t(\sqrt{|\beta|}\,)\in[0,1)$ is the solution of the equation $\sqrt{|\beta|}=\dfrac{1+t}{1-t}\cdot\exp(2t/(1-t^2))$.
@article{SM_2001_192_11_a0,
     author = {A. P. Bulanov},
     title = {Infinite iterated power with alternating coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1589--1620},
     publisher = {mathdoc},
     volume = {192},
     number = {11},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Infinite iterated power with alternating coefficients
JO  - Sbornik. Mathematics
PY  - 2001
SP  - 1589
EP  - 1620
VL  - 192
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/
LA  - en
ID  - SM_2001_192_11_a0
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Infinite iterated power with alternating coefficients
%J Sbornik. Mathematics
%D 2001
%P 1589-1620
%V 192
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/
%G en
%F SM_2001_192_11_a0
A. P. Bulanov. Infinite iterated power with alternating coefficients. Sbornik. Mathematics, Tome 192 (2001) no. 11, pp. 1589-1620. http://geodesic.mathdoc.fr/item/SM_2001_192_11_a0/