Deformations of classical Lie algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1171-1190
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a classical Lie algebra $L$ of characteristic $p>2$ and different from $C_2$ it is proved that $H^2(L,L)=0$ when $p=3$.  A classical Lie algebra is understood to be the Lie algebra of a simple algebraic group, or its quotient algebra by the centre, or a Lie algebra $A_l^z$ with $l+1\equiv 0(p)$ or $E_6^z$ when $p=3$.
			
            
            
            
          
        
      @article{SM_2000_191_8_a2,
     author = {M. I. Kuznetsov and N. G. Chebochko},
     title = {Deformations of classical {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1171--1190},
     publisher = {mathdoc},
     volume = {191},
     number = {8},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a2/}
}
                      
                      
                    M. I. Kuznetsov; N. G. Chebochko. Deformations of classical Lie algebras. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1171-1190. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a2/
