Deformations of classical Lie algebras
Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1171-1190

Voir la notice de l'article provenant de la source Math-Net.Ru

For a classical Lie algebra $L$ of characteristic $p>2$ and different from $C_2$ it is proved that $H^2(L,L)=0$ when $p=3$. A classical Lie algebra is understood to be the Lie algebra of a simple algebraic group, or its quotient algebra by the centre, or a Lie algebra $A_l^z$ with $l+1\equiv 0(p)$ or $E_6^z$ when $p=3$.
@article{SM_2000_191_8_a2,
     author = {M. I. Kuznetsov and N. G. Chebochko},
     title = {Deformations of classical {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {1171--1190},
     publisher = {mathdoc},
     volume = {191},
     number = {8},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_8_a2/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
AU  - N. G. Chebochko
TI  - Deformations of classical Lie algebras
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1171
EP  - 1190
VL  - 191
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_8_a2/
LA  - en
ID  - SM_2000_191_8_a2
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%A N. G. Chebochko
%T Deformations of classical Lie algebras
%J Sbornik. Mathematics
%D 2000
%P 1171-1190
%V 191
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_8_a2/
%G en
%F SM_2000_191_8_a2
M. I. Kuznetsov; N. G. Chebochko. Deformations of classical Lie algebras. Sbornik. Mathematics, Tome 191 (2000) no. 8, pp. 1171-1190. http://geodesic.mathdoc.fr/item/SM_2000_191_8_a2/