On differential-geometric characteristics of Veronese curves
Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1015-1031 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One part of the algebraizability problem for smooth submanifolds of a projective space is to find differential-geometric invariants of concrete algebraic varieties. In this paper, a property characterizing the Veronese curves $W^1_n$ is discovered and proved. A necessary and sufficient condition for a pair of smooth curves to lie on one Veronese curve is also found. Let $\gamma\times\gamma\setminus\operatorname{diag}(\gamma\times \gamma)$ be the manifold parametrizing pairs of distinct points on a curve $\gamma$, and let $\gamma _1\times \gamma _2$ be the manifold parametrizing pairs of points on two curves $\gamma_1$ and $\gamma_2$ embedded in a projective space $P^n$. A system of differential invariants $J_1,J_2,\dots,J_{n-1}$, is constructed on the manifolds $\gamma\times \gamma\setminus\operatorname{diag}(\gamma\times\gamma )$ and $\gamma_1\times \gamma_2$. These invariants have the following geometric interpretation. On the manifold $\gamma\times\gamma\setminus\operatorname{diag}(\gamma\times\gamma)$ the condition $J_1\equiv J_2\equiv\dots\equiv J_{n-1}\equiv1$ means that $\gamma$ is a Veronese curve $W^1_n$. On the manifold $\gamma_1\times\gamma_2$ the condition $J_1\equiv J_2\equiv\dots\equiv J_{n-1}\equiv1$ is equivalent to the fact that the curves $\gamma_1$ and $\gamma_2$ lie in one Veronese curve $W^1_n$.
@article{SM_2000_191_7_a3,
     author = {V. V. Konnov},
     title = {On differential-geometric characteristics of {Veronese} curves},
     journal = {Sbornik. Mathematics},
     pages = {1015--1031},
     year = {2000},
     volume = {191},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_7_a3/}
}
TY  - JOUR
AU  - V. V. Konnov
TI  - On differential-geometric characteristics of Veronese curves
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1015
EP  - 1031
VL  - 191
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_7_a3/
LA  - en
ID  - SM_2000_191_7_a3
ER  - 
%0 Journal Article
%A V. V. Konnov
%T On differential-geometric characteristics of Veronese curves
%J Sbornik. Mathematics
%D 2000
%P 1015-1031
%V 191
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2000_191_7_a3/
%G en
%F SM_2000_191_7_a3
V. V. Konnov. On differential-geometric characteristics of Veronese curves. Sbornik. Mathematics, Tome 191 (2000) no. 7, pp. 1015-1031. http://geodesic.mathdoc.fr/item/SM_2000_191_7_a3/

[1] Akivis M. A., “O lokalnom uslovii algebraizuemosti sistemy podmnogoobrazii veschestvennogo proektivnogo prostranstva”, Dokl. AN SSSR, 272:6 (1983), 1289–1291 | MR | Zbl

[2] Akivis M. A., “O nekotorykh zadachakh algebraizuemosti v proektivno-differentsialnoi geometrii”, Izv. vuzov. Ser. matem., 1992, no. 6, 3–14 | MR | Zbl

[3] Griffiths P., Harris J., “Algebraic geometry and local differential geometry”, Ann. Sci. École Norm. Sup. (4), 12 (1979), 355–452 | MR | Zbl

[4] Akivis M. A., Goldberg V. V., Projective differential geometry of submanifolds, North-Holland, Amsterdam, 1993 | MR | Zbl

[5] Sasaki T., “On the Veronese embedding and related system of differential equations”, Global differential geometry and global analysis, Proc. Conf. (Berlin 1990), Lecture Notes in Math., 1481, 1991, 210–247 | MR | Zbl

[6] Little J. A., Pohl W. F., “On tight immersions of maximal codimension”, Invent. Math., 11 (1971), 179–204 | DOI | MR

[7] Chern S. S., do Carmo M., Kobayashi S., “Minimal submanifolds on the sphere with second fundamental form of constant length”, Functional analysis and related field, Proc. Conf. for M. Stone (Univ. Chicago, Ill, 1968), Springer-Verlag, New York, 1970, 59–75 | MR

[8] Nomizu K., “A characterization of Veronese varieties”, Nagoya Math. J., 60 (1976), 181–188 | MR | Zbl

[9] Nomizu K., Yano K., “On circles and spheres in Riemannian geometry”, Math. Ann., 210 (1974), 163–170 | DOI | MR | Zbl

[10] Griffiths P., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41:4 (1974), 775–814 | DOI | MR | Zbl

[11] Konnov V. V., Differentsialnaya geometriya nekotorykh klassov algebraicheskikh mnogoobrazii, SamGPU, Samara, 1998 | Zbl

[12] Klein F., Vysshaya geometriya, GONTI, M.–L., 1939

[13] Akivis M. A., Shelekhov A. M., Geometricheskie i abstraktnye tri-tkani, Pskov, 1980