On the problem of the~description of sequences of best rational trigonometric approximations
Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 927-936
Voir la notice de l'article provenant de la source Math-Net.Ru
For a fixed sequence $\{a_n\}^\infty_{n=0}$ of non-negative real numbers strictly decreasing to zero a continuous $2\pi$-periodic function $f$ is constructed such that $R^T_n(f)=a_n$, $n=0,1,2,\dots$, where the $R^T_n(f)$ are the best approximations of $f$ in the uniform norm by rational trigonometric functions of degree at most $n$.
@article{SM_2000_191_6_a6,
author = {A. P. Starovoitov},
title = {On the problem of the~description of sequences of best rational trigonometric approximations},
journal = {Sbornik. Mathematics},
pages = {927--936},
publisher = {mathdoc},
volume = {191},
number = {6},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_6_a6/}
}
TY - JOUR AU - A. P. Starovoitov TI - On the problem of the~description of sequences of best rational trigonometric approximations JO - Sbornik. Mathematics PY - 2000 SP - 927 EP - 936 VL - 191 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_6_a6/ LA - en ID - SM_2000_191_6_a6 ER -
A. P. Starovoitov. On the problem of the~description of sequences of best rational trigonometric approximations. Sbornik. Mathematics, Tome 191 (2000) no. 6, pp. 927-936. http://geodesic.mathdoc.fr/item/SM_2000_191_6_a6/