Balanced systems of primitive idempotents in matrix algebras
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 543-565 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article develops the concept of balanced $t$-systems of idempotents in associative semisimple finite-dimensional algebras over the field of complex numbers $\mathbb C$ this was introduced by the author as a generalization of the concept of combinatorial $t$-schemes, which in this context corresponds to the case of commutative algebras. Balanced 2-systems are considered consisting of $v$ primitive idempotents in the matrix algebra $\mathrm M_n(\mathbb C)$, known as $(v,n)$-systems. It is proved that $(n+1,n)$-systems are unique and it is shown that there are no $(n+s,n)$-systems with $n>s^2-s$ or $s>n^2-n$. The $(q+1,n)$-systems having 2-transitive automorphism subgroup $PSL(2,q)$, $q$ odd, are classified. The (4,2)- and (6,3)-systems are classified. A balanced basis is constructed in the algebras $\mathrm M_n$, $n=2,3$. Connections are established between conference matrices and $(2n,n)$-systems, and between suitable matrices and $\biggl(m^2,\dfrac{m^2\pm m}2\biggr)$-systems.
@article{SM_2000_191_4_a3,
     author = {D. N. Ivanov},
     title = {Balanced systems of primitive idempotents in matrix algebras},
     journal = {Sbornik. Mathematics},
     pages = {543--565},
     year = {2000},
     volume = {191},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a3/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - Balanced systems of primitive idempotents in matrix algebras
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 543
EP  - 565
VL  - 191
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a3/
LA  - en
ID  - SM_2000_191_4_a3
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T Balanced systems of primitive idempotents in matrix algebras
%J Sbornik. Mathematics
%D 2000
%P 543-565
%V 191
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2000_191_4_a3/
%G en
%F SM_2000_191_4_a3
D. N. Ivanov. Balanced systems of primitive idempotents in matrix algebras. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 543-565. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a3/

[1] Ivanov D. N., “Ortogonalnye razlozheniya assotsiativnykh algebr i sbalansirovannye sistemy idempotentov”, Matem. sb., 189:12 (1998), 83–102 | MR | Zbl

[2] Kameron P., van Lint Dzh., Teoriya grafov, teoriya kodirovaniya i blok-skhemy, Nauka, M., 1980 | MR

[3] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979 | Zbl

[4] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., “Ortogonalnye razlozheniya prostykh algebr Li (tip $A_n$)”, Tr. MIAN, 158, Nauka, M., 1981, 105–120 | MR | Zbl

[5] Kostrikin A. I., Pham Huu Tiep, Orthogonal decompositions and integral lattices, Walter de Gruyter, Berlin, 1994 | MR

[6] Isaacs I. M., Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[7] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[8] Naimark M. A., Teoriya predstavlenii grupp, Nauka, M., 1976 | MR

[9] Goethals J. M., Seidel J. J., “Orthogonal matrices with zero diagonal”, Canad. J. Math., 19 (1967), 1001–1010 | MR | Zbl

[10] Delsarte P., Goethals J. M., Seidel J. J., “Orthogonal matrices with zero diagonal, II”, Canad. J. Math., 23:5 (1971), 816–832 | MR | Zbl

[11] Belevitch V., “Theory of $2n$-dimensional networks with application to conference telephony”, Electron Comm. Japan Part III Fund. Electron Sci., 27 (1950), 231–244

[12] Belevitch V., “Conference networks and Hadamard matrices”, Ann. Soc. Sci. Bruxelles Ser. 1, 82 (1968), 13–32 | MR | Zbl

[13] Ufnarovskii V. A., “O podkhodyaschikh matritsakh vtorogo poryadka”, Matem. issledovaniya, no. 90, Shtiintsa, Kishinev, 1986, 113–136 | MR