Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 503-527

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations of the following form are considered: \begin{equation} \psi^2(t,x)u_{tt}+\varphi(t,x)u_t-\sum_{i,j}\bigl(a^{ij}(t,x)u_{x_i}\bigr)_{x_j}+\sum_ib^i(t,x)u_{x_i}+c(t,x)u=f(t,x), \tag{1} \end{equation} where \begin{gather*} (t,x)\in H=(0,T)\times\mathbb R^n, \qquad \psi(t,x)\geqslant 0, \qquad \varphi(t,x)\geqslant0; \\ \sum_{i,j}a^{ij}(t,x)\xi_i\xi_j\geqslant0 \quad \forall\,(t,x)\in H, \quad \forall\,\xi=(\xi_1,\dots,\xi_n)\in\mathbb R^n. \end{gather*} In place of the Cauchy problem for (1), a problem without initial data but with constraints on the admissible growth of the solution as $t\to0$ and as $|x|\to\infty$ is discussed. The unique solubility of (1) in certain Sobolev-type weighted spaces is proved. The smoothness properties of generalized solutions are studied.
@article{SM_2000_191_4_a1,
     author = {A. V. Deryabina},
     title = {Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface},
     journal = {Sbornik. Mathematics},
     pages = {503--527},
     publisher = {mathdoc},
     volume = {191},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a1/}
}
TY  - JOUR
AU  - A. V. Deryabina
TI  - Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 503
EP  - 527
VL  - 191
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a1/
LA  - en
ID  - SM_2000_191_4_a1
ER  - 
%0 Journal Article
%A A. V. Deryabina
%T Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface
%J Sbornik. Mathematics
%D 2000
%P 503-527
%V 191
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_4_a1/
%G en
%F SM_2000_191_4_a1
A. V. Deryabina. Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 503-527. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a1/