Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 503-527
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Equations of the following form are considered:
\begin{equation}
\psi^2(t,x)u_{tt}+\varphi(t,x)u_t-\sum_{i,j}\bigl(a^{ij}(t,x)u_{x_i}\bigr)_{x_j}+\sum_ib^i(t,x)u_{x_i}+c(t,x)u=f(t,x),
\tag{1}
\end{equation}
where
\begin{gather*}
(t,x)\in H=(0,T)\times\mathbb R^n, \qquad \psi(t,x)\geqslant 0, \qquad \varphi(t,x)\geqslant0;
\\
\sum_{i,j}a^{ij}(t,x)\xi_i\xi_j\geqslant0 \quad \forall\,(t,x)\in H, \quad \forall\,\xi=(\xi_1,\dots,\xi_n)\in\mathbb R^n.
\end{gather*} In place of the Cauchy problem for (1), a problem without initial data but with constraints on the admissible growth of the solution as $t\to0$ and as $|x|\to\infty$ is discussed. The unique solubility of (1) in certain Sobolev-type weighted spaces is proved. The smoothness properties of generalized solutions are studied.
			
            
            
            
          
        
      @article{SM_2000_191_4_a1,
     author = {A. V. Deryabina},
     title = {Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface},
     journal = {Sbornik. Mathematics},
     pages = {503--527},
     publisher = {mathdoc},
     volume = {191},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_4_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Deryabina TI - Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface JO - Sbornik. Mathematics PY - 2000 SP - 503 EP - 527 VL - 191 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_4_a1/ LA - en ID - SM_2000_191_4_a1 ER -
A. V. Deryabina. Second-order hyperbolic equations with strong characteristic degeneracy at the initial hypersurface. Sbornik. Mathematics, Tome 191 (2000) no. 4, pp. 503-527. http://geodesic.mathdoc.fr/item/SM_2000_191_4_a1/
