An analogue of Morse theory for planar linear networks and the generalized Steiner problem
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 209-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the generalized Steiner problem: the problem of finding all the locally minimal networks spanning a given boundary set (terminal set). It is proposed to solve this problem by using an analogue of Morse theory developed here for planar linear networks. The space $\mathscr K$ of all planar linear networks spanning a given boundary set is constructed. The concept of a critical point and its index is defined for the length function $\ell$ of a planar linear network. It is shown that locally minimal networks are local minima of $\ell$ on $\mathscr K$ and are critical points of index 1. The theorem is proved that the sum of the indices of all the critical points is equal to $\chi(\mathscr K)=1$. This theorem is used to find estimates for the number of locally minimal networks spanning a given boundary set.
@article{SM_2000_191_2_a2,
     author = {G. A. Karpunin},
     title = {An analogue of {Morse} theory for planar linear networks and the~generalized {Steiner} problem},
     journal = {Sbornik. Mathematics},
     pages = {209--233},
     year = {2000},
     volume = {191},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/}
}
TY  - JOUR
AU  - G. A. Karpunin
TI  - An analogue of Morse theory for planar linear networks and the generalized Steiner problem
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 209
EP  - 233
VL  - 191
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/
LA  - en
ID  - SM_2000_191_2_a2
ER  - 
%0 Journal Article
%A G. A. Karpunin
%T An analogue of Morse theory for planar linear networks and the generalized Steiner problem
%J Sbornik. Mathematics
%D 2000
%P 209-233
%V 191
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/
%G en
%F SM_2000_191_2_a2
G. A. Karpunin. An analogue of Morse theory for planar linear networks and the generalized Steiner problem. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 209-233. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/

[1] Hwang F. K., Richards D. S., Winter P., The Steiner tree problem, North-Holland, Amsterdam, 1992 | MR | Zbl

[2] Clark R. C., “Communication networks, soap films and vectors”, Phys. Ed., 16 (1986), 32–37 | DOI

[3] Garey M. R., Graham R. L., Johnson D. S., “Some NP-complete geometric problems”, Proc. 8th ann. ACM Symp. Theor. Comput. (Hershey, 1976), 1976, 10–22 | MR | Zbl

[4] Hildebrandt S., Tromba A., Mathimatics and optimal form, Scientific American Books, New York, 1984

[5] Melzak Z. A., Companion to concrete mathematics, Wiley, New York, 1973 | MR | Zbl

[6] Preparata F., Sheimos M., Vychislitelnaya geometriya. Vvedenie, Mir, M., 1989 | MR | Zbl

[7] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl

[8] Fomenko A. T., Topologicheskie variatsionnye zadachi, Izd-vo MGU, M., 1984 | MR | Zbl

[9] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR

[10] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR

[11] Musin O. R., “O nekotorykh zadachakh vychislitelnoi geometrii i topologii”, Algebraicheskie voprosy analiza i topologii, Voronezhskii gos. un-t, Voronezh, 1990, 30–51 | MR

[12] Postnikov M. M., Lektsii po geometrii. Semestr III. Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[13] Ivanov A. O., Geometricheskie svoistva lokalno minimalnykh setei, Diss. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1998

[14] Ivanov A. O., Tuzhilin A. A., Minimal networks: the Steiner problem and its generalizations, CRC Press, Boca Raton, 1994 | MR | Zbl

[15] Ivanov A. O., Tuzhilin A. A., “Geometriya mnozhestva minimalnykh setei dannoi topologii s fiksirovannoi granitsei”, Izv. RAN. Ser. matem., 61:6 (1997), 119–152 | MR | Zbl