An analogue of Morse theory for planar linear networks and the~generalized Steiner problem
Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 209-233

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the generalized Steiner problem: the problem of finding all the locally minimal networks spanning a given boundary set (terminal set). It is proposed to solve this problem by using an analogue of Morse theory developed here for planar linear networks. The space $\mathscr K$ of all planar linear networks spanning a given boundary set is constructed. The concept of a critical point and its index is defined for the length function $\ell$ of a planar linear network. It is shown that locally minimal networks are local minima of $\ell$ on $\mathscr K$ and are critical points of index 1. The theorem is proved that the sum of the indices of all the critical points is equal to $\chi(\mathscr K)=1$. This theorem is used to find estimates for the number of locally minimal networks spanning a given boundary set.
@article{SM_2000_191_2_a2,
     author = {G. A. Karpunin},
     title = {An analogue of {Morse} theory for planar linear networks and the~generalized {Steiner} problem},
     journal = {Sbornik. Mathematics},
     pages = {209--233},
     publisher = {mathdoc},
     volume = {191},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/}
}
TY  - JOUR
AU  - G. A. Karpunin
TI  - An analogue of Morse theory for planar linear networks and the~generalized Steiner problem
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 209
EP  - 233
VL  - 191
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/
LA  - en
ID  - SM_2000_191_2_a2
ER  - 
%0 Journal Article
%A G. A. Karpunin
%T An analogue of Morse theory for planar linear networks and the~generalized Steiner problem
%J Sbornik. Mathematics
%D 2000
%P 209-233
%V 191
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/
%G en
%F SM_2000_191_2_a2
G. A. Karpunin. An analogue of Morse theory for planar linear networks and the~generalized Steiner problem. Sbornik. Mathematics, Tome 191 (2000) no. 2, pp. 209-233. http://geodesic.mathdoc.fr/item/SM_2000_191_2_a2/