On everywhere divergence of trigonometric Fourier series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 97-120
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following theorem is established.
Theorem.
{\it Let a function $\varphi\colon[0,+\infty)\to[0,+\infty)$ and a sequence $\{\psi(m)\}$ satisfy the following condition: the function $\varphi(u)/u$ is non-decreasing on $(0,+\infty)$, $\psi(m)\geqslant 1$ $(m=1,2,\dots)$ and $\varphi(m)\psi(m)=o(m\sqrt{\ln m}/\sqrt{\ln\ln m}\,)$ as $m\to\infty$. Then there is a function $f\in L[-\pi,\pi]$ such that 
$$
\int _{-\pi}^\pi\varphi(|f(x)|)\,dx\infty 
$$
and $\limsup_{m\to\infty}S_m(f,x)/\psi(m)=\infty$ for all $x\in[-\pi,\pi]$ here $S_m(f)$ is the $m$-th partial sum of the trigonometric Fourier series of $f$}.
			
            
            
            
          
        
      @article{SM_2000_191_1_a3,
     author = {S. V. Konyagin},
     title = {On everywhere divergence of trigonometric {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {97--120},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a3/}
}
                      
                      
                    S. V. Konyagin. On everywhere divergence of trigonometric Fourier series. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 97-120. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a3/
