On everywhere divergence of trigonometric Fourier series
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 97-120

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is established. Theorem. {\it Let a function $\varphi\colon[0,+\infty)\to[0,+\infty)$ and a sequence $\{\psi(m)\}$ satisfy the following condition: the function $\varphi(u)/u$ is non-decreasing on $(0,+\infty)$, $\psi(m)\geqslant 1$ $(m=1,2,\dots)$ and $\varphi(m)\psi(m)=o(m\sqrt{\ln m}/\sqrt{\ln\ln m}\,)$ as $m\to\infty$. Then there is a function $f\in L[-\pi,\pi]$ such that $$ \int _{-\pi}^\pi\varphi(|f(x)|)\,dx\infty $$ and $\limsup_{m\to\infty}S_m(f,x)/\psi(m)=\infty$ for all $x\in[-\pi,\pi]$ here $S_m(f)$ is the $m$-th partial sum of the trigonometric Fourier series of $f$}.
@article{SM_2000_191_1_a3,
     author = {S. V. Konyagin},
     title = {On everywhere divergence of trigonometric {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {97--120},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a3/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On everywhere divergence of trigonometric Fourier series
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 97
EP  - 120
VL  - 191
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a3/
LA  - en
ID  - SM_2000_191_1_a3
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On everywhere divergence of trigonometric Fourier series
%J Sbornik. Mathematics
%D 2000
%P 97-120
%V 191
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_1_a3/
%G en
%F SM_2000_191_1_a3
S. V. Konyagin. On everywhere divergence of trigonometric Fourier series. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 97-120. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a3/