Non-linear analytic and coanalytic problems ($L_p$-theory, Clifford analysis, examples)
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 61-95

Voir la notice de l'article provenant de la source Math-Net.Ru

Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the “orthogonal” sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
@article{SM_2000_191_1_a2,
     author = {Yu. A. Dubinskii and A. S. Osipenko},
     title = {Non-linear analytic and coanalytic problems ($L_p$-theory, {Clifford} analysis, examples)},
     journal = {Sbornik. Mathematics},
     pages = {61--95},
     publisher = {mathdoc},
     volume = {191},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a2/}
}
TY  - JOUR
AU  - Yu. A. Dubinskii
AU  - A. S. Osipenko
TI  - Non-linear analytic and coanalytic problems ($L_p$-theory, Clifford analysis, examples)
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 61
EP  - 95
VL  - 191
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a2/
LA  - en
ID  - SM_2000_191_1_a2
ER  - 
%0 Journal Article
%A Yu. A. Dubinskii
%A A. S. Osipenko
%T Non-linear analytic and coanalytic problems ($L_p$-theory, Clifford analysis, examples)
%J Sbornik. Mathematics
%D 2000
%P 61-95
%V 191
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_1_a2/
%G en
%F SM_2000_191_1_a2
Yu. A. Dubinskii; A. S. Osipenko. Non-linear analytic and coanalytic problems ($L_p$-theory, Clifford analysis, examples). Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 61-95. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a2/