Non-linear analytic and coanalytic problems ($L_p$-theory, Clifford analysis, examples)
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 61-95
Voir la notice de l'article provenant de la source Math-Net.Ru
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the “orthogonal” sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
@article{SM_2000_191_1_a2,
author = {Yu. A. Dubinskii and A. S. Osipenko},
title = {Non-linear analytic and coanalytic problems ($L_p$-theory, {Clifford} analysis, examples)},
journal = {Sbornik. Mathematics},
pages = {61--95},
publisher = {mathdoc},
volume = {191},
number = {1},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a2/}
}
TY - JOUR AU - Yu. A. Dubinskii AU - A. S. Osipenko TI - Non-linear analytic and coanalytic problems ($L_p$-theory, Clifford analysis, examples) JO - Sbornik. Mathematics PY - 2000 SP - 61 EP - 95 VL - 191 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a2/ LA - en ID - SM_2000_191_1_a2 ER -
Yu. A. Dubinskii; A. S. Osipenko. Non-linear analytic and coanalytic problems ($L_p$-theory, Clifford analysis, examples). Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 61-95. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a2/