Implicit function theorem as a realization of the Lagrange principle. Abnormal points
Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 1-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A smooth non-linear map is studied in a neighbourhood of an abnormal (degenerate) point. Inverse function and implicit function theorems are proved. The proof is based on the examination of a family of constrained extremal problems; second-order necessary conditions, which make sense also in the abnormal case, are used in the process. If the point under consideration is normal, then these conditions turn into the classical ones.
@article{SM_2000_191_1_a0,
     author = {A. V. Arutyunov},
     title = {Implicit function theorem as a~realization of {the~Lagrange} principle. {Abnormal} points},
     journal = {Sbornik. Mathematics},
     pages = {1--24},
     year = {2000},
     volume = {191},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_1_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Implicit function theorem as a realization of the Lagrange principle. Abnormal points
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1
EP  - 24
VL  - 191
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_1_a0/
LA  - en
ID  - SM_2000_191_1_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Implicit function theorem as a realization of the Lagrange principle. Abnormal points
%J Sbornik. Mathematics
%D 2000
%P 1-24
%V 191
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2000_191_1_a0/
%G en
%F SM_2000_191_1_a0
A. V. Arutyunov. Implicit function theorem as a realization of the Lagrange principle. Abnormal points. Sbornik. Mathematics, Tome 191 (2000) no. 1, pp. 1-24. http://geodesic.mathdoc.fr/item/SM_2000_191_1_a0/

[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[4] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[5] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[6] Arutyunov A. V., “Usloviya vtorogo poryadka v ekstremalnykh zadachakh s konechnomernym obrazom. 2-normalnye otobrazheniya”, Izv. RAN. Ser. matem., 60:1 (1996), 37–62 | MR | Zbl

[7] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[8] Agrachev A. A., Sarychev A. V., “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincaré Anal. Non. Linéare, 13:6 (1996), 635–690 | MR | Zbl

[9] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl

[10] Agrachev A. A., “Topologiya kvadratichnykh otobrazhenii i gessiany gladkikh otobrazhenii”, Itogi nauki i tekhn. Algebra. Geometriya. Topologiya, 26, VINITI, M., 1988, 85–124 | MR

[11] Matveev A. S., Kriterii vypuklosti obrazov kvadratichnykh otobrazhenii v teorii optimalnogo upravleniya sistemami, opisyvaemymi differentsialnymi uravneniyami, Dis. ... dokt. fiz.-matem. nauk, S.-Peterburg, 1998

[12] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979 | MR

[13] Arutyunov A. V., “Teorema o neyavnoi funktsii i anormalnye tochki”, Dokl. AN, 368:5 (1999), 586–589 | MR | Zbl

[14] Arutyunov A. V., Rozova V. N., “Regulyarnye nuli kvadratichnogo otobrazheniya i lokalnaya upravlyaemost nelineinykh sistem”, Differents. uravneniya, 35:6 (1999), 723–728 | MR | Zbl

[15] Arutyunov A. V., Yachimovich V., “K teorii ekstremuma dlya anormalnykh zadach”, Vestnik MGU. Ser. VMK, 2000, no. 1