Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1587-1606
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(\xi,\eta)$ be a function vanishing for $\xi^2+\eta^2>r^2$, where $r$ is sufficiently small, and with Fourier series (of the function considered in the square $(-\pi,\pi]^2$) or Fourier integral (of the function considered in the plane $\mathbb R^2$) convergent uniformly or almost everywhere over rectangles. It is shown that a rotation of the system of coordinates through $\pi/4$
$$
\begin{cases}
\xi=(x-y)/\sqrt 2\,,
\\
\eta=(y+x)/\sqrt 2
\end{cases}
$$
can “damage” the convergence of the Fourier series or the Fourier integral of the resulting function.
@article{SM_2000_191_11_a0,
author = {O. S. Dragoshanskii},
title = {Convergence of {Fourier} double series and {Fourier} integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates},
journal = {Sbornik. Mathematics},
pages = {1587--1606},
publisher = {mathdoc},
volume = {191},
number = {11},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a0/}
}
TY - JOUR AU - O. S. Dragoshanskii TI - Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates JO - Sbornik. Mathematics PY - 2000 SP - 1587 EP - 1606 VL - 191 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a0/ LA - en ID - SM_2000_191_11_a0 ER -
%0 Journal Article %A O. S. Dragoshanskii %T Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates %J Sbornik. Mathematics %D 2000 %P 1587-1606 %V 191 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a0/ %G en %F SM_2000_191_11_a0
O. S. Dragoshanskii. Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1587-1606. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a0/