A~matrix problem over a~discrete valuation ring
Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 835-858

Voir la notice de l'article provenant de la source Math-Net.Ru

A flat matrix problem of mixed type (over a discrete valuation ring and its skew field of fractions) is considered which naturally arises in connection with several problems in the theory of integer-valued representations and in ring theory. For this problem, a criterion for module boundedness is proved, which is stated in terms of a pair of partially ordered sets $\bigl(\mathscr P(A),\mathscr P(B)\bigr)$ associated with the pair of transforming algebras $(A,B)$ defining the problem. The corresponding statement coincides in effect with the formulation of Kleiner's well-known finite-type criterion for representations of pairs of partially ordered sets over a field. The proof is based on a reduction (which uses the techniques of differentiation) to representations of semimaximal rings (tiled orders) and partially ordered sets.
@article{SM_1999_190_6_a3,
     author = {A. G. Zavadskii and U. S. Revitskaya},
     title = {A~matrix problem over a~discrete valuation ring},
     journal = {Sbornik. Mathematics},
     pages = {835--858},
     publisher = {mathdoc},
     volume = {190},
     number = {6},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/}
}
TY  - JOUR
AU  - A. G. Zavadskii
AU  - U. S. Revitskaya
TI  - A~matrix problem over a~discrete valuation ring
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 835
EP  - 858
VL  - 190
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/
LA  - en
ID  - SM_1999_190_6_a3
ER  - 
%0 Journal Article
%A A. G. Zavadskii
%A U. S. Revitskaya
%T A~matrix problem over a~discrete valuation ring
%J Sbornik. Mathematics
%D 1999
%P 835-858
%V 190
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/
%G en
%F SM_1999_190_6_a3
A. G. Zavadskii; U. S. Revitskaya. A~matrix problem over a~discrete valuation ring. Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 835-858. http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/