A matrix problem over a discrete valuation ring
Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 835-858 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A flat matrix problem of mixed type (over a discrete valuation ring and its skew field of fractions) is considered which naturally arises in connection with several problems in the theory of integer-valued representations and in ring theory. For this problem, a criterion for module boundedness is proved, which is stated in terms of a pair of partially ordered sets $\bigl(\mathscr P(A),\mathscr P(B)\bigr)$ associated with the pair of transforming algebras $(A,B)$ defining the problem. The corresponding statement coincides in effect with the formulation of Kleiner's well-known finite-type criterion for representations of pairs of partially ordered sets over a field. The proof is based on a reduction (which uses the techniques of differentiation) to representations of semimaximal rings (tiled orders) and partially ordered sets.
@article{SM_1999_190_6_a3,
     author = {A. G. Zavadskii and U. S. Revitskaya},
     title = {A~matrix problem over a~discrete valuation ring},
     journal = {Sbornik. Mathematics},
     pages = {835--858},
     year = {1999},
     volume = {190},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/}
}
TY  - JOUR
AU  - A. G. Zavadskii
AU  - U. S. Revitskaya
TI  - A matrix problem over a discrete valuation ring
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 835
EP  - 858
VL  - 190
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/
LA  - en
ID  - SM_1999_190_6_a3
ER  - 
%0 Journal Article
%A A. G. Zavadskii
%A U. S. Revitskaya
%T A matrix problem over a discrete valuation ring
%J Sbornik. Mathematics
%D 1999
%P 835-858
%V 190
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/
%G en
%F SM_1999_190_6_a3
A. G. Zavadskii; U. S. Revitskaya. A matrix problem over a discrete valuation ring. Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 835-858. http://geodesic.mathdoc.fr/item/SM_1999_190_6_a3/

[1] Zavadskii A. G., Kirichenko V. V., “Moduli bez krucheniya nad pervichnymi koltsami”, Zapiski nauch. sem. LOMI, 57, Nauka, L., 1976, 100–116 | MR | Zbl

[2] Zavadskii A. G., Kirichenko V. V., “Polumaksimalnye koltsa konechnogo tipa”, Matem. sb., 103:3 (1977), 323–345 | MR | Zbl

[3] Gubareni N. M., O polusovershennykh nasledstvennykh sprava koltsakh modulno-ogranichennogo tipa, Preprint 78.1, In-t matematiki AN USSR, Kiev, 1978 | MR | Zbl

[4] Kirichenko V. V., Kostyukevich P. P., Yaremenko Yu. V., “Biryadnye koltsa i moduli nad nimi”, Algebraicheskie struktury i ikh prilozheniya, Kiev, 1988, 43–74

[5] Kleiner M. M., “Chastichno uporyadochennye mnozhestva konechnogo tipa”, Zapiski nauch. sem. LOMI, 28, Nauka, L., 1972, 32–41 | MR | Zbl

[6] Nazarova L. A., Roiter A. V., “Predstavleniya chastichno uporyadochennykh mnozhestv”, Zapiski nauch. sem. LOMI, 28, Nauka, L., 1972, 5–31 | MR | Zbl

[7] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[8] Drozd Yu. A., “Matrichnye zadachi i kategorii matrits”, Zapiski nauch. sem. LOMI, 28, Nauka, L., 1972, 144–153 | MR | Zbl

[9] Warfield R. B., “Serial Rings and Finitely Presented Modules”, J. Algebra, 37:2 (1975), 187–222 | DOI | MR | Zbl

[10] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[11] Kleiner M. M., “O tochnykh predstavleniyakh chastichno uporyadochennykh mnozhestv konechnogo tipa”, Zapiski nauch. sem. LOMI, 28, Nauka, L., 1972, 42–59 | MR

[12] Zavadskii A. G., “Algoritm differentsirovaniya i klassifikatsiya predstavlenii”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1007–1048 | Zbl

[13] Drozd Yu. A., “Preobrazovaniya Kokstera i predstavleniya chastichno uporyadochennykh mnozhestv”, Funkts. analiz i ego prilozh., 8:3 (1974), 34–42 | MR | Zbl

[14] Gabriel P., “Representations indecomposables des ensembles ordonnes”, Sem. Dubreil (algebra), no. 13, 1972/73, 1301–1304 | MR