On the successive minima of the extended logarithmic height of algebraic numbers
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 407-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that $\mathbb K\subseteq\mathbb C$ is an algebraic field; $S=2$ if $\mathbb K$ is complex, and $S=1$ if $\mathbb K\subseteq\mathbb R$; $\delta=[\mathbb K:\mathbb Q]/S$. For $\alpha\in\mathbb K^*$ let $H_*(\alpha)=\max\bigl\{\delta h(\alpha),|\ln\alpha|\bigr\}$, where $h(\alpha)$ is the Weil height of the number $\alpha$. Then the inequality $$ H_*(\alpha_1)\dotsb H_*(\alpha_n)2.5^n(e^{0.2n}n)^S\delta\ln(4.64\delta)>1 $$ holds for multiplicatively independent $\alpha_1,\dots,\alpha_n\in\mathbb K^*$.
@article{SM_1999_190_3_a2,
     author = {E. M. Matveev},
     title = {On the successive minima of the~extended logarithmic height of algebraic numbers},
     journal = {Sbornik. Mathematics},
     pages = {407--425},
     year = {1999},
     volume = {190},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - On the successive minima of the extended logarithmic height of algebraic numbers
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 407
EP  - 425
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/
LA  - en
ID  - SM_1999_190_3_a2
ER  - 
%0 Journal Article
%A E. M. Matveev
%T On the successive minima of the extended logarithmic height of algebraic numbers
%J Sbornik. Mathematics
%D 1999
%P 407-425
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/
%G en
%F SM_1999_190_3_a2
E. M. Matveev. On the successive minima of the extended logarithmic height of algebraic numbers. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 407-425. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[2] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[3] Tsfasman M. A., “Global fields, codes and sphere packings”, Journees arithmetiques, Exp. Congr. (Luminy/Fr. 1989), Astérisque, 198–200, 1991, 373–396 | MR | Zbl

[4] Pohst M. E., Computational algebraic number theory, DMV Seminar, 21, Birkhäuser, Basel, 1993 | MR | Zbl

[5] Leng S., Osnovy diofantovoi geometrii, Mir, M., 1986 | MR | Zbl

[6] Lehmer D. H., “Factorization of certain cyclotomic functions”, Ann. of Math., 34:2 (1993), 461–479 | MR

[7] Dobrowolski E., “On a question of Lehmer and the number of irreducible factors of a polynomial”, Acta Arith., 34 (1979), 391–401 | MR | Zbl

[8] Matveev E. M., “O svyazi mery Malera i diskriminanta algebraicheskikh chisel”, Matem. zametki, 59:3 (1996), 415–420 | MR | Zbl

[9] Blanksby P. E., Montgomery H. L., “Algebraic integers near the unit circle”, Acta Arith., 18 (1971), 355–369 | MR | Zbl

[10] Smyth C. J., “On the product of conjugates outside the unit circle of an algebraic integer”, Bull. London Math. Soc., 3 (1971), 169–175 | DOI | MR | Zbl

[11] Schinzel A., “On the product of the conjugates outside the unit circle of an algebraic number”, Acta Arith., 24 (1973), 385–399 | MR | Zbl

[12] Boyd D. W., “Reciprocal polynomials having small measure. I; II”, Math. Comp., 35:152 (1980), 1361–1377 ; Math. Comp., 53:187 (1989), 355–357 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Zimmert R., “Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung”, Invent. Math., 62 (1981), 367–380 | DOI | MR

[14] Friedman E., “Analytic formulas for the regulator of a number field”, Invent. Math., 98 (1989), 599–622 | DOI | MR | Zbl

[15] Waldschmidt M., “A lower bound for linear forms in logarithms”, Acta Arith., 37 (1980), 257–283 | MR | Zbl

[16] Matveev E. M., “Ob odnom tipe multiplikativnykh algebraicheskikh reshetok”, Tezisy dokladov mezhdunarodnoi konferentsii “Sovremennye problemy teorii chisel” (Tula 20–25 sentyabrya 1993 g.), TGPI, Tula, 1993, 107

[17] Matveev E. M., “Ob algebraicheskikh chislakh maloi logarifmicheskoi vysoty”, Diofantovy priblizheniya, Monografii i tematicheskie sborniki. Matematicheskie zapiski, 2, 1996, 90–98

[18] Flammang V., “Inegalites sur la mesure de Mahler d'un polynome”, J. Théor. Nombres Bordeaux, 9:1 (1997), 69–74 | MR | Zbl

[19] Laurent M., “Sur quelques résultats récent de trancsendance”, Journees arithmetiques, Exp. Congr. (Luminy/Fr. 1989), Astérisque, 198–200, 1991, 209–230 | MR | Zbl