On the successive minima of the~extended logarithmic height of algebraic numbers
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 407-425

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathbb K\subseteq\mathbb C$ is an algebraic field; $S=2$ if $\mathbb K$ is complex, and $S=1$ if $\mathbb K\subseteq\mathbb R$; $\delta=[\mathbb K:\mathbb Q]/S$. For $\alpha\in\mathbb K^*$ let $H_*(\alpha)=\max\bigl\{\delta h(\alpha),|\ln\alpha|\bigr\}$, where $h(\alpha)$ is the Weil height of the number $\alpha$. Then the inequality $$ H_*(\alpha_1)\dotsb H_*(\alpha_n)2.5^n(e^{0.2n}n)^S\delta\ln(4.64\delta)>1 $$ holds for multiplicatively independent $\alpha_1,\dots,\alpha_n\in\mathbb K^*$.
@article{SM_1999_190_3_a2,
     author = {E. M. Matveev},
     title = {On the successive minima of the~extended logarithmic height of algebraic numbers},
     journal = {Sbornik. Mathematics},
     pages = {407--425},
     publisher = {mathdoc},
     volume = {190},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - On the successive minima of the~extended logarithmic height of algebraic numbers
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 407
EP  - 425
VL  - 190
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/
LA  - en
ID  - SM_1999_190_3_a2
ER  - 
%0 Journal Article
%A E. M. Matveev
%T On the successive minima of the~extended logarithmic height of algebraic numbers
%J Sbornik. Mathematics
%D 1999
%P 407-425
%V 190
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/
%G en
%F SM_1999_190_3_a2
E. M. Matveev. On the successive minima of the~extended logarithmic height of algebraic numbers. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 407-425. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/