On the successive minima of the~extended logarithmic height of algebraic numbers
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 407-425
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose that $\mathbb K\subseteq\mathbb C$ is an algebraic field; $S=2$ if $\mathbb K$ is complex, and $S=1$ if $\mathbb K\subseteq\mathbb R$; $\delta=[\mathbb K:\mathbb Q]/S$. For $\alpha\in\mathbb K^*$ let $H_*(\alpha)=\max\bigl\{\delta h(\alpha),|\ln\alpha|\bigr\}$, where $h(\alpha)$ is the Weil height of the number $\alpha$. Then the inequality 
$$
H_*(\alpha_1)\dotsb H_*(\alpha_n)2.5^n(e^{0.2n}n)^S\delta\ln(4.64\delta)>1
$$
holds for multiplicatively independent $\alpha_1,\dots,\alpha_n\in\mathbb K^*$.
			
            
            
            
          
        
      @article{SM_1999_190_3_a2,
     author = {E. M. Matveev},
     title = {On the successive minima of the~extended logarithmic height of algebraic numbers},
     journal = {Sbornik. Mathematics},
     pages = {407--425},
     publisher = {mathdoc},
     volume = {190},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/}
}
                      
                      
                    E. M. Matveev. On the successive minima of the~extended logarithmic height of algebraic numbers. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 407-425. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a2/
