Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1361-1383

Voir la notice de l'article provenant de la source Math-Net.Ru

Jackson–Nikol'skii inequalities in the spaces $L_{p_1,p_2}(\mathbb T^d)$ and $L_{p_1,p_2}(\mathbb R^d)$ endowed with asymmetric norms are studied for trigonometric polynomials and entire functions of exponential type, respectively. It is shown that for any $d\in {\mathbb N}$, $\mathbf n\in {\mathbb N}^d$ and $p_1,p_2,q_1,q_2\in (0,\infty]$ a trigonometric polynomial $T_{\mathbf n}$ of degree $n_j$ in $x_j$ satisfies the inequality $$ \|T_{\mathbf n}\|_{L_{q_1,q_2}(\mathbb T^d)} \leqslant C_{p_1,p_2,q_1,q_2,d}\biggl (\prod ^d_{j=1}n_j\biggr ) ^{\psi (p_1,p_2,q_1,q_2,d)}\|T_{\mathbf n}\|_{L_{p_1,p_2}(\mathbb T^d)}, $$ where $C_{p_1,p_2,q_1,q_2,d}$ is a constant independent of $\mathbf n$ and $\psi$ is an explicitly indicated function. Examples of polynomials show that this estimate is sharp in order. A similar result is obtained for functions of exponential type.
@article{SM_1998_189_9_a3,
     author = {A. I. Kozko},
     title = {Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm},
     journal = {Sbornik. Mathematics},
     pages = {1361--1383},
     publisher = {mathdoc},
     volume = {189},
     number = {9},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/}
}
TY  - JOUR
AU  - A. I. Kozko
TI  - Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1361
EP  - 1383
VL  - 189
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/
LA  - en
ID  - SM_1998_189_9_a3
ER  - 
%0 Journal Article
%A A. I. Kozko
%T Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm
%J Sbornik. Mathematics
%D 1998
%P 1361-1383
%V 189
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/
%G en
%F SM_1998_189_9_a3
A. I. Kozko. Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1361-1383. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/