Multidimensional inequalities between distinct metrics in spaces with an asymmetric norm
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1361-1383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Jackson–Nikol'skii inequalities in the spaces $L_{p_1,p_2}(\mathbb T^d)$ and $L_{p_1,p_2}(\mathbb R^d)$ endowed with asymmetric norms are studied for trigonometric polynomials and entire functions of exponential type, respectively. It is shown that for any $d\in {\mathbb N}$, $\mathbf n\in {\mathbb N}^d$ and $p_1,p_2,q_1,q_2\in (0,\infty]$ a trigonometric polynomial $T_{\mathbf n}$ of degree $n_j$ in $x_j$ satisfies the inequality $$ \|T_{\mathbf n}\|_{L_{q_1,q_2}(\mathbb T^d)} \leqslant C_{p_1,p_2,q_1,q_2,d}\biggl (\prod ^d_{j=1}n_j\biggr ) ^{\psi (p_1,p_2,q_1,q_2,d)}\|T_{\mathbf n}\|_{L_{p_1,p_2}(\mathbb T^d)}, $$ where $C_{p_1,p_2,q_1,q_2,d}$ is a constant independent of $\mathbf n$ and $\psi$ is an explicitly indicated function. Examples of polynomials show that this estimate is sharp in order. A similar result is obtained for functions of exponential type.
@article{SM_1998_189_9_a3,
     author = {A. I. Kozko},
     title = {Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm},
     journal = {Sbornik. Mathematics},
     pages = {1361--1383},
     year = {1998},
     volume = {189},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/}
}
TY  - JOUR
AU  - A. I. Kozko
TI  - Multidimensional inequalities between distinct metrics in spaces with an asymmetric norm
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1361
EP  - 1383
VL  - 189
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/
LA  - en
ID  - SM_1998_189_9_a3
ER  - 
%0 Journal Article
%A A. I. Kozko
%T Multidimensional inequalities between distinct metrics in spaces with an asymmetric norm
%J Sbornik. Mathematics
%D 1998
%P 1361-1383
%V 189
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/
%G en
%F SM_1998_189_9_a3
A. I. Kozko. Multidimensional inequalities between distinct metrics in spaces with an asymmetric norm. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1361-1383. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/

[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[2] Jackson D., “Certain problem of closest approximation”, Bull. Amer. Math. Soc., 39 (1933), 889–906 | DOI | MR | Zbl

[3] Arestov V. V., “Neravenstva raznykh metrik dlya trigonometricheskikh polinomov”, Matem. zametki, 27:4 (1980), 539–547 | MR | Zbl

[4] Kozko A. I., “On Jackson–Nikolskii inequalities for trigonometric polinomials of degree $n$ in spaces with asymmetrical norms”, East J. Approx., 2:2 (1996), 177–186 | MR | Zbl

[5] Kozko A. I., “Analogi neravenstv Dzheksona–Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh s nesimmetrichnoi normoi”, Matem. zametki, 61:5 (1997), 687–699 | MR | Zbl

[6] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Uchenye zap. MGU, 30:3 (1939), 3–16

[7] Stechkin S. B., “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60:9 (1948), 1511–1514 | MR | Zbl

[8] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1962

[10] Nikolskii S. M., Kurs matematicheskogo analiza, T. 1, Nauka, M., 1990 | MR

[11] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948

[12] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl