Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm
Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1361-1383
Voir la notice de l'article provenant de la source Math-Net.Ru
Jackson–Nikol'skii inequalities in the spaces $L_{p_1,p_2}(\mathbb T^d)$ and $L_{p_1,p_2}(\mathbb R^d)$ endowed with asymmetric norms are studied for trigonometric polynomials and entire functions of exponential type, respectively. It is shown that for any $d\in {\mathbb N}$, $\mathbf n\in {\mathbb N}^d$ and $p_1,p_2,q_1,q_2\in (0,\infty]$ a trigonometric polynomial $T_{\mathbf n}$ of degree $n_j$ in $x_j$ satisfies the inequality
$$
\|T_{\mathbf n}\|_{L_{q_1,q_2}(\mathbb T^d)}
\leqslant C_{p_1,p_2,q_1,q_2,d}\biggl (\prod ^d_{j=1}n_j\biggr )
^{\psi (p_1,p_2,q_1,q_2,d)}\|T_{\mathbf n}\|_{L_{p_1,p_2}(\mathbb T^d)},
$$
where $C_{p_1,p_2,q_1,q_2,d}$ is a constant independent of $\mathbf n$ and $\psi$ is an explicitly indicated function. Examples of polynomials show that this estimate is sharp in order. A similar result is obtained for functions of exponential type.
@article{SM_1998_189_9_a3,
author = {A. I. Kozko},
title = {Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm},
journal = {Sbornik. Mathematics},
pages = {1361--1383},
publisher = {mathdoc},
volume = {189},
number = {9},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/}
}
A. I. Kozko. Multidimensional inequalities between distinct metrics in spaces with an~asymmetric norm. Sbornik. Mathematics, Tome 189 (1998) no. 9, pp. 1361-1383. http://geodesic.mathdoc.fr/item/SM_1998_189_9_a3/