On the small balls problem for equivalent Gaussian measures
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 683-705
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu$ be a centred Gaussian measure in a linear space $X$ with Cameron-Martin space $H$, let $q$ be a $\mu$-measurable seminorm, and let $Q$ be a $\mu$-measurable second-order polynomial. We show that it is sufficient for the existence of the limit $\lim _{\varepsilon \to 0}\mathsf E(\exp Q|q\leqslant \varepsilon)$, where $E$ is the expectation with respect to $\mu$, that the second derivative $D_{\!H}^{\,2}Q$ of the function $Q$ be a nuclear operator on $H$. This condition is also necessary for the existence of the above-mentioned limit for all seminorms $q$. The problem under discussion can be reformulated as follows: study
$\lim _{\varepsilon \to 0}\nu (q\leqslant \varepsilon )/\mu (q\leqslant \varepsilon )$ for Gaussian measures $\nu$ equivalent to $\mu$.
@article{SM_1998_189_5_a2,
author = {V. I. Bogachev},
title = {On the small balls problem for equivalent {Gaussian} measures},
journal = {Sbornik. Mathematics},
pages = {683--705},
publisher = {mathdoc},
volume = {189},
number = {5},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/}
}
V. I. Bogachev. On the small balls problem for equivalent Gaussian measures. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 683-705. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/