@article{SM_1998_189_5_a2,
author = {V. I. Bogachev},
title = {On the small balls problem for equivalent {Gaussian} measures},
journal = {Sbornik. Mathematics},
pages = {683--705},
year = {1998},
volume = {189},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/}
}
V. I. Bogachev. On the small balls problem for equivalent Gaussian measures. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 683-705. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/
[1] Sytaya G. N., “Ob asimptotike mery malykh sfer dlya gaussovskikh protsessov, ekvivalentnykh brounovskomu”, Teoriya veroyatn. i matem. statist., 1977, no. 19, 128–133 | MR
[2] Nagaev S. V., “Ob asimptotike vinerovskoi mery uzkoi polosy”, Teoriya veroyatn. i ee primen., 26:3 (1981), 630 | MR
[3] Novikov A. A., “Malye ukloneniya gaussovskikh protsessov”, Matem. zametki, 29:2 (1981), 291–301 | MR | Zbl
[4] Li W., “Comparison results for the lower tail of Gaussian seminorm”, J. Theoret. Probab., 5 (1992), 1–32 | DOI | MR
[5] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl
[6] Linde W., “Comparison results for the small ball behavior of Gaussian random variables”, Probability in Banach spaces, 9, eds. J. Hoffmann-Jorgensen, J. Kuelbs, M. B. Marcus, Birkhäuser, Boston, 1994, 273–297 | MR
[7] Bogachev V. I., “Funktsii Onzagera–Maklupa dlya gaussovskikh mer”, Dokl. AN, 344:4 (1995), 439–441 | MR | Zbl
[8] Bogachev V. I., Gaussovskie mery, Fizmatlit, M., 1997 | MR | Zbl
[9] Kuelbs J., Li W., “Metric entropy and the small ball problem for Gaussian measures”, J. Funct. Anal., 116:1 (1993), 133–157 | DOI | MR | Zbl
[10] Shao Q.-M., Wang D., “Small ball probabilities of Gaussian fields”, Probab. Theory Related Fields, 102 (1995), 511–517 | DOI | MR | Zbl
[11] Shi Z., “Small ball probabilities for a Wiener process under weighted sup-norms, with an application to the supremum of Bessel local times”, J. Theoret. Probab., 9:4 (1996), 915–929 | DOI | MR | Zbl
[12] Stolz W., “Some small ball probabilities for Gaussian processes under nonuniform norms”, J. Theoret. Probab., 9:3 (1996), 613–630 | DOI | MR | Zbl
[13] Cirelson B. S., Ibragimov I. A., Sudakov V. N., “Norms of Gaussian sample functions”, Lect. Notes in Math., 550, 1976, 20–41 | MR | Zbl
[14] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR
[15] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1984 | MR | Zbl
[16] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl
[17] Shepp L. A., Zeitouni O., “A note on conditional exponential moments and the Onsager Machlup functional”, Ann. Probab., 20:1 (1992), 652–654 | DOI | MR | Zbl
[18] Shepp L. A., “Radon–Nikodym derivatives of Gaussian measures”, Ann. Math. Statist., 37:2 (1966), 321–354 | DOI | MR | Zbl
[19] Shepp L. A., Zeitouni O., “Exponential estimates for convex norms and some applications”, Barcelona Seminar on Stochastic Analysis, Progr. Probab., 32, Birkhäuser, Boston, 1993, 203–215 | MR | Zbl
[20] Šidák Z., “On multivariate normal probabilities of rectangles: their dependence on correlations”, Ann. Math. Statist., 39:5 (1968), 1425–1434 | MR
[21] Preiss D., “Gaussian measures and covering theorems”, Comment. Math. Univ. Carolin., 20:1 (1979), 95–99 | MR | Zbl
[22] Preiss D., “Gaussian measures and the density theorems”, Comment. Math. Univ. Carolin., 22:1 (1981), 181–193 | MR | Zbl
[23] Preiss D., “Differentiation of measures in infinitely dimensional spaces”, Topol. and Meas. III, Proc. Conf., Part 2 (Vitte/Hiddensee, Oct. 19–25, 1980), Wissen. Beitrage d. Greifswald Univ., Greifswald, 1982, 201–207 | MR | Zbl