On the small balls problem for equivalent Gaussian measures
Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 683-705

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu$ be a centred Gaussian measure in a linear space $X$ with Cameron-Martin space $H$, let $q$ be a $\mu$-measurable seminorm, and let $Q$ be a $\mu$-measurable second-order polynomial. We show that it is sufficient for the existence of the limit $\lim _{\varepsilon \to 0}\mathsf E(\exp Q|q\leqslant \varepsilon)$, where $E$ is the expectation with respect to $\mu$, that the second derivative $D_{\!H}^{\,2}Q$ of the function $Q$ be a nuclear operator on $H$. This condition is also necessary for the existence of the above-mentioned limit for all seminorms $q$. The problem under discussion can be reformulated as follows: study $\lim _{\varepsilon \to 0}\nu (q\leqslant \varepsilon )/\mu (q\leqslant \varepsilon )$ for Gaussian measures $\nu$ equivalent to $\mu$.
@article{SM_1998_189_5_a2,
     author = {V. I. Bogachev},
     title = {On the small balls problem for equivalent {Gaussian} measures},
     journal = {Sbornik. Mathematics},
     pages = {683--705},
     publisher = {mathdoc},
     volume = {189},
     number = {5},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - On the small balls problem for equivalent Gaussian measures
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 683
EP  - 705
VL  - 189
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/
LA  - en
ID  - SM_1998_189_5_a2
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T On the small balls problem for equivalent Gaussian measures
%J Sbornik. Mathematics
%D 1998
%P 683-705
%V 189
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/
%G en
%F SM_1998_189_5_a2
V. I. Bogachev. On the small balls problem for equivalent Gaussian measures. Sbornik. Mathematics, Tome 189 (1998) no. 5, pp. 683-705. http://geodesic.mathdoc.fr/item/SM_1998_189_5_a2/