Approximation properties of exponential systems on the real line and the half-line
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 443-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For arbitrary $a>0$ and $\alpha >1$ a class of entire functions depending on a complex parameter $\mu$ is constructed. The values of $\mu$ such that the sequence of zeros $\lambda _n$ of a function in this class generates a complete and minimal exponential system $$ \exp \bigl (-i\lambda _nt-a|t|^\alpha \bigr) $$ in $L^p(\mathbb R)$ $(L^p(\mathbb R_+))$, $p\geqslant 2$, are described. Examples of such systems were previously known only for $\alpha=2$.
@article{SM_1998_189_3_a5,
     author = {A. M. Sedletskii},
     title = {Approximation properties of exponential systems on the real line and the half-line},
     journal = {Sbornik. Mathematics},
     pages = {443--460},
     year = {1998},
     volume = {189},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Approximation properties of exponential systems on the real line and the half-line
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 443
EP  - 460
VL  - 189
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/
LA  - en
ID  - SM_1998_189_3_a5
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Approximation properties of exponential systems on the real line and the half-line
%J Sbornik. Mathematics
%D 1998
%P 443-460
%V 189
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/
%G en
%F SM_1998_189_3_a5
A. M. Sedletskii. Approximation properties of exponential systems on the real line and the half-line. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 443-460. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/

[1] Zalik R., “On approximation by shifts and a theorem of Wiener”, Trans. Amer. Math. Soc., 243 (1978), 299–308 | DOI | MR | Zbl

[2] Zalik R., “On some gap theorems and the closure of translates”, Notices Amer. Math. Soc., 25:2 (1978), A–314

[3] Faxen B., “On approximation by translates and related problems in function theory”, Ark. Math., 19:2 (1981), 271–289 | DOI | MR | Zbl

[4] Sedletskii A. M., “Approksimatsiya sdvigami i polnota vzveshennykh sistem eksponent v $L^2(\mathbb R)$”, Matem. sb., 123:1 (1984), 92–107 | MR

[5] Sedletskii A. M., “Approksimatsiya sdvigami funktsii na pryamoi”, Teoriya priblizh. funktsii, Tr. Mezhdunar. konf. priblizh. funktsii (Kiev, 31 maya – 5 iyunya, 1983), Nauka, M., 1987, 397–400

[6] Viner N., Integral Fure i nekotorye ego prilozheniya, Fizmatgiz, M., 1963

[7] Sedletskii A. M., “Approksimativnye svoistva sistem eksponent v $L^p(a,b)$”, Differents. uravn., 31:10 (1995), 1675–1681 | MR

[8] Zalik R., Abuabara Saad T., “Some theorems concerning holomorphic Fourier transforms”, J. Math. Anal. Appl., 126 (1987), 483–493 | DOI | MR | Zbl

[9] Salnikova T. A., “Polnye i minimalnye sistemy eksponent v prostranstvakh $L^p(\mathbb R)$”, Matem. zametki, 55:3 (1994), 118–129 | MR | Zbl

[10] Levin B. Ya., Tselye funktsii (kurs lektsii), Izd-vo MGU, M., 1971

[11] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[12] Sedletskii A. M., “Preobrazovaniya Fure bystro ubyvayuschikh funktsii”, Izv. RAN. Ser. matem., 61:3 (1997), 187–202 | MR

[13] Sedletskii A. M., “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, UMN, 37:5 (1982), 51–95 | MR

[14] Sedletskii A. M., “Asimptoticheskie formuly dlya nulei funktsii tipa Mittag–Lefflera”, Anal. Math., 20 (1994), 117–132 | DOI | MR