Approximation properties of exponential systems on the real line and the half-line
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 443-460

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary $a>0$ and $\alpha >1$ a class of entire functions depending on a complex parameter $\mu$ is constructed. The values of $\mu$ such that the sequence of zeros $\lambda _n$ of a function in this class generates a complete and minimal exponential system $$ \exp \bigl (-i\lambda _nt-a|t|^\alpha \bigr) $$ in $L^p(\mathbb R)$ $(L^p(\mathbb R_+))$, $p\geqslant 2$, are described. Examples of such systems were previously known only for $\alpha=2$.
@article{SM_1998_189_3_a5,
     author = {A. M. Sedletskii},
     title = {Approximation properties of exponential  systems on the real line and the half-line},
     journal = {Sbornik. Mathematics},
     pages = {443--460},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Approximation properties of exponential  systems on the real line and the half-line
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 443
EP  - 460
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/
LA  - en
ID  - SM_1998_189_3_a5
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Approximation properties of exponential  systems on the real line and the half-line
%J Sbornik. Mathematics
%D 1998
%P 443-460
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/
%G en
%F SM_1998_189_3_a5
A. M. Sedletskii. Approximation properties of exponential  systems on the real line and the half-line. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 443-460. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/