Approximation properties of exponential systems on the real line and the half-line
Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 443-460
Voir la notice de l'article provenant de la source Math-Net.Ru
For arbitrary $a>0$ and $\alpha >1$ a class of entire functions depending on a complex parameter $\mu$ is constructed. The values of $\mu$ such that the sequence of zeros $\lambda _n$ of a function in this class generates a complete and minimal exponential system
$$
\exp \bigl (-i\lambda _nt-a|t|^\alpha \bigr)
$$
in $L^p(\mathbb R)$ $(L^p(\mathbb R_+))$, $p\geqslant 2$, are described. Examples of such systems were previously known only for $\alpha=2$.
@article{SM_1998_189_3_a5,
author = {A. M. Sedletskii},
title = {Approximation properties of exponential systems on the real line and the half-line},
journal = {Sbornik. Mathematics},
pages = {443--460},
publisher = {mathdoc},
volume = {189},
number = {3},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/}
}
A. M. Sedletskii. Approximation properties of exponential systems on the real line and the half-line. Sbornik. Mathematics, Tome 189 (1998) no. 3, pp. 443-460. http://geodesic.mathdoc.fr/item/SM_1998_189_3_a5/