Integral manifolds of contact distributions
Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1855-1870

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of an integral manifold of the contact distribution (a Legendre submanifold) that passes through an arbitrary point in a contact manifold $M^{2n+1}$, in an arbitrary totally real $n$-dimensional direction is established. A Legendre submanifold with these initial data is not unique in general, but in the case of a $K$-contact manifold of dimension greater than 5 the set of these submanifolds is shown to contain a totally geodesic submanifold (which is called a Blair submanifold in the paper) if and only if this $K$-contact manifold is a Sasakian space form. Each Blair submanifold of a Sasakian space form of $\Phi$-holomorphic sectional curvature $c$ is a space of constant curvature $(c+3)/4$. Applications of these results to the geometry of principal toroidal bundles are found.
@article{SM_1998_189_12_a7,
     author = {V. F. Kirichenko and I. P. Borisovskii},
     title = {Integral manifolds of contact distributions},
     journal = {Sbornik. Mathematics},
     pages = {1855--1870},
     publisher = {mathdoc},
     volume = {189},
     number = {12},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_12_a7/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - I. P. Borisovskii
TI  - Integral manifolds of contact distributions
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1855
EP  - 1870
VL  - 189
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_12_a7/
LA  - en
ID  - SM_1998_189_12_a7
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A I. P. Borisovskii
%T Integral manifolds of contact distributions
%J Sbornik. Mathematics
%D 1998
%P 1855-1870
%V 189
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_12_a7/
%G en
%F SM_1998_189_12_a7
V. F. Kirichenko; I. P. Borisovskii. Integral manifolds of contact distributions. Sbornik. Mathematics, Tome 189 (1998) no. 12, pp. 1855-1870. http://geodesic.mathdoc.fr/item/SM_1998_189_12_a7/