@article{SM_1998_189_11_a5,
author = {A. Yu. Solynin},
title = {Harmonic measure of radial line segments and symmetrization},
journal = {Sbornik. Mathematics},
pages = {1701--1718},
year = {1998},
volume = {189},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a5/}
}
A. Yu. Solynin. Harmonic measure of radial line segments and symmetrization. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1701-1718. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a5/
[1] Solynin A. Yu., “Extremal problems on conformal moduli and estimates for harmonic measures”, J. Anal. Math., 74 (1998), 1–49 | DOI | MR | Zbl
[2] Campbell D. M., Clunie J. G., Hayman W. K., “Research problems in complex analysis”, Aspects of contemporary complex analysis, Academic Press, London, 1980, 527–571 | MR
[3] Dubinin V. N., “Ob izmenenii garmonicheskoi mery pri simmetrizatsii”, Matem. sb., 124:2 (1984), 272–279 | MR | Zbl
[4] Haliste K., A note on extremal configurations for harmonic measure, Report. Dept. Math. Univ. Umea, No 1, 1991
[5] Baernstein A. II, “On the harmonic measure of slit domains”, Complex Variables Theory Appl., 9 (1987), 131–142 | MR | Zbl
[6] Solynin A. Yu., “Geometricheskie svoistva ekstremalnykh razbienii i otsenki modulei semeistv krivykh v krugovom koltse”, Analiticheskaya teoriya chisel i teoriya funktsii. 11, Zap. nauchn. semin. POMI, 204, POMI, S.-Peterburg, 1993, 93–114 | MR
[7] Solynin A. Yu., “Some extremal problems on the hyperbolic polygons”, Complex Variables Theory Appl., 36:3–4 (1998) | MR | Zbl
[8] Kheiman V. K., Mnogolistnye funktsii, IL, M., 1960
[9] Dzhenkins Dzh., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962
[10] Jenkins J. A., “On the existence of certain general extremal metrics”, Ann. of Math., 66 (1957), 440–453 | DOI | MR | Zbl
[11] Shiffer M., “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige: R. Kurant, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953
[12] Mityuk I. P., Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980
[13] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl
[14] Haliste K., “On an extremal configuration for capacity”, Ark. Mat., 27 (1989), 97–104 | DOI | MR | Zbl
[15] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1962 | MR
[16] Solynin A. Yu., “Reshenie odnoi izoperimetricheskoi zadachi Polia–Segë”, Analiticheskaya teoriya chisel i teoriya funktsii. 9, Zap. nauchn. semin. LOMI, 168, LOMI, L., 1988, 140–153
[17] Solynin A. Yu., Moduli i ekstremalno-metricheskie problemy, Preprint POMI No 3/1997, POMI, S.-Peterburg, 1997
[18] Koppenfels V., Shtalman F., Praktika konformnykh otobrazhenii, IL, M., 1963
[19] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR
[20] Solynin A. Yu., “Granichnoe iskazhenie i ekstremalnye zadachi v nekotorykh klassakh odnolistnykh funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 11, Zap. nauchn. semin. POMI, 204, POMI, S.-Peterburg, 1993, 115–142 | MR