Harmonic measure of radial line segments and symmetrization
Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1701-1718 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $l_k=\{z:\operatorname {arg}z=\alpha _k,\ r_1\leqslant |z|\leqslant r_2\}$ for $k=1,\dots,n$, $0, and $\alpha _k\in \mathbb R$; let $E=\bigcup _{k=1}^nl_k$, let $E^*=\{z:\operatorname {arg}z^n=0,\ r_1\leqslant |z|\leqslant r_2\}$; and let $\omega _E(z)$ be the harmonic measure of $E$ with respect to the domain $\{z:|z|<1\}\setminus E$. The inequality $\omega _E(0)\leqslant \omega _{E^*}(0)$ is established, which solves the problem of Gonchar on the harmonic measure of radial slits. The proof uses the dissymmetrization method of Dubinin and the method of the extremal metric in the form of the problem of extremal partitioning into non-overlapping domains.
@article{SM_1998_189_11_a5,
     author = {A. Yu. Solynin},
     title = {Harmonic measure of radial line segments and symmetrization},
     journal = {Sbornik. Mathematics},
     pages = {1701--1718},
     year = {1998},
     volume = {189},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_11_a5/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Harmonic measure of radial line segments and symmetrization
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1701
EP  - 1718
VL  - 189
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_11_a5/
LA  - en
ID  - SM_1998_189_11_a5
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Harmonic measure of radial line segments and symmetrization
%J Sbornik. Mathematics
%D 1998
%P 1701-1718
%V 189
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1998_189_11_a5/
%G en
%F SM_1998_189_11_a5
A. Yu. Solynin. Harmonic measure of radial line segments and symmetrization. Sbornik. Mathematics, Tome 189 (1998) no. 11, pp. 1701-1718. http://geodesic.mathdoc.fr/item/SM_1998_189_11_a5/

[1] Solynin A. Yu., “Extremal problems on conformal moduli and estimates for harmonic measures”, J. Anal. Math., 74 (1998), 1–49 | DOI | MR | Zbl

[2] Campbell D. M., Clunie J. G., Hayman W. K., “Research problems in complex analysis”, Aspects of contemporary complex analysis, Academic Press, London, 1980, 527–571 | MR

[3] Dubinin V. N., “Ob izmenenii garmonicheskoi mery pri simmetrizatsii”, Matem. sb., 124:2 (1984), 272–279 | MR | Zbl

[4] Haliste K., A note on extremal configurations for harmonic measure, Report. Dept. Math. Univ. Umea, No 1, 1991

[5] Baernstein A. II, “On the harmonic measure of slit domains”, Complex Variables Theory Appl., 9 (1987), 131–142 | MR | Zbl

[6] Solynin A. Yu., “Geometricheskie svoistva ekstremalnykh razbienii i otsenki modulei semeistv krivykh v krugovom koltse”, Analiticheskaya teoriya chisel i teoriya funktsii. 11, Zap. nauchn. semin. POMI, 204, POMI, S.-Peterburg, 1993, 93–114 | MR

[7] Solynin A. Yu., “Some extremal problems on the hyperbolic polygons”, Complex Variables Theory Appl., 36:3–4 (1998) | MR | Zbl

[8] Kheiman V. K., Mnogolistnye funktsii, IL, M., 1960

[9] Dzhenkins Dzh., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962

[10] Jenkins J. A., “On the existence of certain general extremal metrics”, Ann. of Math., 66 (1957), 440–453 | DOI | MR | Zbl

[11] Shiffer M., “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”, Prilozhenie k knige: R. Kurant, Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, IL, M., 1953

[12] Mityuk I. P., Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980

[13] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[14] Haliste K., “On an extremal configuration for capacity”, Ark. Mat., 27 (1989), 97–104 | DOI | MR | Zbl

[15] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1962 | MR

[16] Solynin A. Yu., “Reshenie odnoi izoperimetricheskoi zadachi Polia–Segë”, Analiticheskaya teoriya chisel i teoriya funktsii. 9, Zap. nauchn. semin. LOMI, 168, LOMI, L., 1988, 140–153

[17] Solynin A. Yu., Moduli i ekstremalno-metricheskie problemy, Preprint POMI No 3/1997, POMI, S.-Peterburg, 1997

[18] Koppenfels V., Shtalman F., Praktika konformnykh otobrazhenii, IL, M., 1963

[19] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR

[20] Solynin A. Yu., “Granichnoe iskazhenie i ekstremalnye zadachi v nekotorykh klassakh odnolistnykh funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 11, Zap. nauchn. semin. POMI, 204, POMI, S.-Peterburg, 1993, 115–142 | MR