@article{SM_1998_189_10_a4,
author = {S. V. Matveev},
title = {Generalized graph manifolds and their effective recognition},
journal = {Sbornik. Mathematics},
pages = {1517--1531},
year = {1998},
volume = {189},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/}
}
S. V. Matveev. Generalized graph manifolds and their effective recognition. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1517-1531. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/
[1] Jaco W., Shalen P., “Seifert Fibered Spaces in $3$-Manifolds”, Mem. Amer. Math. Soc., 80 (1979) | MR | Zbl
[2] Johannson K., Homotopy Equivalence of $3$-Manifolds with Boundaries, Lecture Notes in Math., 761, 1979 | MR | Zbl
[3] Waldhausen F., “Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I; II”, Invent. Math., 3 (1967), 308–333 | DOI | MR | Zbl
[4] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR
[5] Matveev S. V., “Complexity Theory of Three-dimensional Manifolds”, Acta Appl. Math., 19:2 (1990), 101–130 | MR | Zbl
[6] Matveev S. V., “Computer Recognition of Three-Manifolds”, Experiment. Math., 7:2 (1998), 153–161 | MR | Zbl
[7] Otal J.-P., Thurston's Hyperbolization of Haken Manifolds, Preprint. Juin 1997, CNRS-UMR 128
[8] Haken W., “Some Results on Surfaces in $3$-Manifolds”, Studies in Modern Topology, MAA Studies in Math., 5, Prentice-Hall, Engelwood Cliffs, NJ, 1962, 39–98 | MR
[9] Thurston W. P., “Hyperbolic Geometry and $3$-Manifolds”, Low-dimensional topology, London Math. Soc. Lecture Note Ser., 48, 1982, 9–25 | MR | Zbl
[10] Haken W., “Theorie der Normalflächen. Eine Isotopiekriterium für der Kreisknoten”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl