Generalized graph manifolds and their effective recognition
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1517-1531

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized graph manifold is a three-dimensional manifold obtained by gluing together elementary blocks, each of which is either a Seifert manifold or contains no essential tori or annuli. By a well-known result on torus decomposition each compact three-dimensional manifold with boundary that is either empty or consists of tori has a canonical representation as a generalized graph manifold. A short simple proof of the existence of a canonical representation is presented and a (partial) algorithm for its construction is described. A simple hyperbolicity test for blocks that are not Seifert manifolds is also presented.
@article{SM_1998_189_10_a4,
     author = {S. V. Matveev},
     title = {Generalized graph manifolds and their effective recognition},
     journal = {Sbornik. Mathematics},
     pages = {1517--1531},
     publisher = {mathdoc},
     volume = {189},
     number = {10},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Generalized graph manifolds and their effective recognition
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1517
EP  - 1531
VL  - 189
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/
LA  - en
ID  - SM_1998_189_10_a4
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Generalized graph manifolds and their effective recognition
%J Sbornik. Mathematics
%D 1998
%P 1517-1531
%V 189
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/
%G en
%F SM_1998_189_10_a4
S. V. Matveev. Generalized graph manifolds and their effective recognition. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1517-1531. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/