Generalized graph manifolds and their effective recognition
Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1517-1531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized graph manifold is a three-dimensional manifold obtained by gluing together elementary blocks, each of which is either a Seifert manifold or contains no essential tori or annuli. By a well-known result on torus decomposition each compact three-dimensional manifold with boundary that is either empty or consists of tori has a canonical representation as a generalized graph manifold. A short simple proof of the existence of a canonical representation is presented and a (partial) algorithm for its construction is described. A simple hyperbolicity test for blocks that are not Seifert manifolds is also presented.
@article{SM_1998_189_10_a4,
     author = {S. V. Matveev},
     title = {Generalized graph manifolds and their effective recognition},
     journal = {Sbornik. Mathematics},
     pages = {1517--1531},
     year = {1998},
     volume = {189},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/}
}
TY  - JOUR
AU  - S. V. Matveev
TI  - Generalized graph manifolds and their effective recognition
JO  - Sbornik. Mathematics
PY  - 1998
SP  - 1517
EP  - 1531
VL  - 189
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/
LA  - en
ID  - SM_1998_189_10_a4
ER  - 
%0 Journal Article
%A S. V. Matveev
%T Generalized graph manifolds and their effective recognition
%J Sbornik. Mathematics
%D 1998
%P 1517-1531
%V 189
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/
%G en
%F SM_1998_189_10_a4
S. V. Matveev. Generalized graph manifolds and their effective recognition. Sbornik. Mathematics, Tome 189 (1998) no. 10, pp. 1517-1531. http://geodesic.mathdoc.fr/item/SM_1998_189_10_a4/

[1] Jaco W., Shalen P., “Seifert Fibered Spaces in $3$-Manifolds”, Mem. Amer. Math. Soc., 80 (1979) | MR | Zbl

[2] Johannson K., Homotopy Equivalence of $3$-Manifolds with Boundaries, Lecture Notes in Math., 761, 1979 | MR | Zbl

[3] Waldhausen F., “Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I; II”, Invent. Math., 3 (1967), 308–333 | DOI | MR | Zbl

[4] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[5] Matveev S. V., “Complexity Theory of Three-dimensional Manifolds”, Acta Appl. Math., 19:2 (1990), 101–130 | MR | Zbl

[6] Matveev S. V., “Computer Recognition of Three-Manifolds”, Experiment. Math., 7:2 (1998), 153–161 | MR | Zbl

[7] Otal J.-P., Thurston's Hyperbolization of Haken Manifolds, Preprint. Juin 1997, CNRS-UMR 128

[8] Haken W., “Some Results on Surfaces in $3$-Manifolds”, Studies in Modern Topology, MAA Studies in Math., 5, Prentice-Hall, Engelwood Cliffs, NJ, 1962, 39–98 | MR

[9] Thurston W. P., “Hyperbolic Geometry and $3$-Manifolds”, Low-dimensional topology, London Math. Soc. Lecture Note Ser., 48, 1982, 9–25 | MR | Zbl

[10] Haken W., “Theorie der Normalflächen. Eine Isotopiekriterium für der Kreisknoten”, Acta Math., 105 (1961), 245–375 | DOI | MR | Zbl