On the classification of the maximal arithmetic subgroups of simply connected groups
Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1385-1413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G\subset \operatorname {GL}_n$ be a simply connected simple algebraic group defined over a field $K$ of algebraic numbers and let $T$ be the set of all non-Archimedean valuations $v$ of the field $K$. As is well known, each maximal arithmetic subgroup $\Gamma \subset G$ can be uniquely recovered by means of some collection of parachoric subgroups; to be more precise, there exist parachoric subgroups $M_v\subset G(K_v)$, $v\in T$, that have maximal types and satisfy the relation $\Gamma ={\mathrm N}_G(M)$, where $M=G(K)\cap \prod _{v\in T}M_v$. Thus, there naturally arises the following question: for what collections $\{M_v\}_{v\in T}$ of parachoric subgroups $M_v\subset G(K_v)$ of maximal types is the above subgroup $\Gamma \subset G$ a maximal arithmetic subgroup of $G$? Using Rohlfs's cohomology criterion for the maximality of an arithmetic subgroup, necessary and sufficient conditions for the maximality of the above arithmetic subgroup $\Gamma \subset G$ are obtained. The answer is given in terms of the existence of elements of the field $K$ with prescribed divisibility properties.
@article{SM_1997_188_9_a6,
     author = {A. A. Ryzhikov and V. I. Chernousov},
     title = {On the classification of the~maximal arithmetic subgroups of simply connected groups},
     journal = {Sbornik. Mathematics},
     pages = {1385--1413},
     year = {1997},
     volume = {188},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a6/}
}
TY  - JOUR
AU  - A. A. Ryzhikov
AU  - V. I. Chernousov
TI  - On the classification of the maximal arithmetic subgroups of simply connected groups
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1385
EP  - 1413
VL  - 188
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_9_a6/
LA  - en
ID  - SM_1997_188_9_a6
ER  - 
%0 Journal Article
%A A. A. Ryzhikov
%A V. I. Chernousov
%T On the classification of the maximal arithmetic subgroups of simply connected groups
%J Sbornik. Mathematics
%D 1997
%P 1385-1413
%V 188
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1997_188_9_a6/
%G en
%F SM_1997_188_9_a6
A. A. Ryzhikov; V. I. Chernousov. On the classification of the maximal arithmetic subgroups of simply connected groups. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1385-1413. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a6/

[1] Bondarenko A. A., “K klassifikatsii maksimalnykh arifmeticheskikh podgrupp v ortogonalnykh gruppakh tipa $D_l$”, Dokl. AN BSSR, 18:9 (1974), 773–776 | MR | Zbl

[2] Bondarenko A. A., “K probleme maksimalnosti arifmeticheskikh podgrupp v ortogonalnykh gruppakh tipa $B_n$”, Matem. zametki, 16:1 (1974), 151–161 | MR | Zbl

[3] Bondarenko A. A., “Klassifikatsiya maksimalnykh arifmeticheskikh podgrupp ortogonalnykh grupp tipa $D_l$”, Dokl. AN BSSR, 19:11 (1975), 969–972 | MR | Zbl

[4] Bondarenko A. A., “K klassifikatsii maksimalnykh arifmeticheskikh podgrupp v razlozhimykh gruppakh”, Matem. sb., 102:2 (1977), 155–172 | MR | Zbl

[5] Bondarenko A. A., “Klassifikatsiya maksimalnykh arifmeticheskikh podgrupp neopredelennykh ortogonalnykh grupp tipa $B_l$”, Matem. sb., 127:1 (1985), 72–91 | MR | Zbl

[6] Bondarenko A. A., “O maksimalnosti arifmeticheskikh podgrupp neopredelennykh ortogonalnykh grupp tipa $D_l$”, Matem. sb., 181:3 (1990), 388–401 | MR | Zbl

[7] Bondarenko A. A., “Klassifikatsiya maksimalnykh arifmeticheskikh podgrupp neopredelennykh ortogonalnykh grupp tipa $C_l$”, Dokl. AN Belarusi, 38:3 (1994), 29–32 | MR | Zbl

[8] Platonov V. P., “K probleme maksimalnosti arifmeticheskikh grupp”, Dokl. AN SSSR, 200:3 (1971), 530–533 | MR | Zbl

[9] Platonov V. P., “Arifmeticheskaya teoriya algebraicheskikh grupp”, UMN, 37:3 (1982), 3–54 | MR | Zbl

[10] Bruhat F., Tits J., “Groupes reductifs sur un corps local”, Publ. Math. I. H. E. S., 41 (1972), 5–252 | MR

[11] Bruhat F., Tits J., “Groupes reductifs sur un corps local. II: Schemas en groupes. Existence d'une doneé radicielle valueé”, Publ. Math. I. H. E. S., 60 (1984), 5–184 | MR

[12] Platonov V. P., Rapinchuk A. S., Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR

[13] Rohlfs J., “Die maximalen arithmetische definierten Untergruppen zerfallender einfacher Gruppen”, Math. Ann., 244 (1979), 219–231 | DOI | MR | Zbl

[14] Margulis G. A., Rohlfs J., “On the proportionality of covolumes of discrete subgroups”, Math. Ann., 275 (1986), 197–205 | DOI | MR | Zbl

[15] Allan N. D., “The problem of the maximality of arithmetic groups”, Proc. Symp. Pure Math., 9 (1966), 104–109 | MR | Zbl

[16] Allan N. D., “On the maximality of $\operatorname{Sp}(L)$ in $\operatorname{Sp}_n(K)$”, Rev. Colomb. Math., 4:1 (1970), 7–15 | MR | Zbl

[17] Allan N. D., “On the commensurability class of the Siegel modular group”, Bull. Amer. Math. Soc., 74:1 (1968), 114–118 | DOI | MR

[18] Borel A., “Density and maximality of arithmetic subgroups”, J. Reine Angew. Math., 224 (1966), 78–89 | MR | Zbl

[19] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[20] Ragunatan M. S., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[21] Tits Zh., “Klassifikatsiya poluprostykh algebraicheskikh grupp”, Matematika, 12:2 (1968), 110–143 | MR

[22] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[23] Tits J., “Reductive groups over local fields”, Proc. Symp. Pure Math., 33 (1979), 29–69 | MR | Zbl