Weak solutions of second-order quasilinear parabolic equations with double non-linearity
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1343-1370
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The first boundary-value problem for the equation 
$$
\beta (u)\frac {\partial u}{\partial t}-\sum _{i=1}^nD_iA_i(t,x,u,Du)+
A_0(t,x,u,Du)=0
$$
is considered in a bounded subdomain of $n$. The function $\beta (u)$ is assumed to be continuous and satisfy the following growth conditions: 
$$
c|u|^{r-2}\leqslant \beta (u)\leqslant C\bigl (|u|^{r-2}+1\bigr ),\qquad 
r\geqslant 2.
$$
The other coefficients satisfy the standard conditions of the theory of monotone operators. An existence theorem for a global weak solution is proved.
			
            
            
            
          
        
      @article{SM_1997_188_9_a4,
     author = {G. I. Laptev},
     title = {Weak solutions of second-order quasilinear parabolic equations with double non-linearity},
     journal = {Sbornik. Mathematics},
     pages = {1343--1370},
     publisher = {mathdoc},
     volume = {188},
     number = {9},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_9_a4/}
}
                      
                      
                    G. I. Laptev. Weak solutions of second-order quasilinear parabolic equations with double non-linearity. Sbornik. Mathematics, Tome 188 (1997) no. 9, pp. 1343-1370. http://geodesic.mathdoc.fr/item/SM_1997_188_9_a4/
