Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1171-1182
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a subspace $Y$ of a Banach space $X$ the quasiorthogonal set $Q(Y,X)$ is the set of all $n\in X$ such that $0$ is one of the best approximation elements of $n$ in $Y$. The properties of the sets $Q(Y,X)$ are studied; several criteria in terms of these sets for $X$ to be a Hilbert space are established; in particular, generalizations of the well-known theorems of Rudin–Smith–Singer and Kakutani are proved.
@article{SM_1997_188_8_a3,
     author = {P. A. Borodin},
     title = {Quasiorthogonal sets and conditions for {a~Banach} space to be {a~Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {1171--1182},
     year = {1997},
     volume = {188},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1171
EP  - 1182
VL  - 188
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/
LA  - en
ID  - SM_1997_188_8_a3
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space
%J Sbornik. Mathematics
%D 1997
%P 1171-1182
%V 188
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/
%G en
%F SM_1997_188_8_a3
P. A. Borodin. Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1171-1182. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/

[1] Cheney E. W., Wulbert D. E., “The existence and unicity of best approximations”, Math. Scand., 24:1 (1969), 113–140 | MR | Zbl

[2] Singer I., Best approximations in Normed Linear Spaces by Elements of Linear Subspaces, Acad. SRR, Bucharest; Springer-Verlag, Berlin, 1970 | MR

[3] James R. S., “Reflexivity and the supremum of linear functionals”, Ann. of Math., 66:1 (1957), 159–169 | DOI | MR | Zbl

[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[5] Rudin W., Smith K. T., “Linearity of best approximation: a characterization of ellipsoids”, Indag. Math., 23:1 (1961), 97–103 | MR

[6] Blyashke V., Krug i shar, Nauka, M., 1967, 188 pp. | MR

[7] Aleksandrov A. D., “O vypuklykh poverkhnostyakh s ploskimi granitsami tenei”, Matem. sb., 5:2 (1939), 309–316 | MR | Zbl

[8] Kakutani S., “Some characterizations of euclidian spaces”, Japan. J. Math., 16:2 (1939), 93–97 | MR | Zbl

[9] Phillips R. S., “A characterization of Euclidian spaces”, Bull. Amer. Math. Soc., 46:12 (1940), 930–933 | DOI | MR | Zbl

[10] Garkavi A. L., “O chebyshëvskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl

[11] Tikhomirov V. M., Ismagilov R. S., Babadzhanov S. B., “Geometriya banakhova prostranstva i poperechniki mnozhestv”, Izv. AN Uzbekskoi SSR. Ser. fiz.-matem., 1979, no. 4, 25–32 | MR