@article{SM_1997_188_8_a3,
author = {P. A. Borodin},
title = {Quasiorthogonal sets and conditions for {a~Banach} space to be {a~Hilbert} space},
journal = {Sbornik. Mathematics},
pages = {1171--1182},
year = {1997},
volume = {188},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/}
}
P. A. Borodin. Quasiorthogonal sets and conditions for a Banach space to be a Hilbert space. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1171-1182. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/
[1] Cheney E. W., Wulbert D. E., “The existence and unicity of best approximations”, Math. Scand., 24:1 (1969), 113–140 | MR | Zbl
[2] Singer I., Best approximations in Normed Linear Spaces by Elements of Linear Subspaces, Acad. SRR, Bucharest; Springer-Verlag, Berlin, 1970 | MR
[3] James R. S., “Reflexivity and the supremum of linear functionals”, Ann. of Math., 66:1 (1957), 159–169 | DOI | MR | Zbl
[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR
[5] Rudin W., Smith K. T., “Linearity of best approximation: a characterization of ellipsoids”, Indag. Math., 23:1 (1961), 97–103 | MR
[6] Blyashke V., Krug i shar, Nauka, M., 1967, 188 pp. | MR
[7] Aleksandrov A. D., “O vypuklykh poverkhnostyakh s ploskimi granitsami tenei”, Matem. sb., 5:2 (1939), 309–316 | MR | Zbl
[8] Kakutani S., “Some characterizations of euclidian spaces”, Japan. J. Math., 16:2 (1939), 93–97 | MR | Zbl
[9] Phillips R. S., “A characterization of Euclidian spaces”, Bull. Amer. Math. Soc., 46:12 (1940), 930–933 | DOI | MR | Zbl
[10] Garkavi A. L., “O chebyshëvskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl
[11] Tikhomirov V. M., Ismagilov R. S., Babadzhanov S. B., “Geometriya banakhova prostranstva i poperechniki mnozhestv”, Izv. AN Uzbekskoi SSR. Ser. fiz.-matem., 1979, no. 4, 25–32 | MR