Quasiorthogonal sets and conditions for a~Banach space to be a~Hilbert space
Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1171-1182

Voir la notice de l'article provenant de la source Math-Net.Ru

For a subspace $Y$ of a Banach space $X$ the quasiorthogonal set $Q(Y,X)$ is the set of all $n\in X$ such that $0$ is one of the best approximation elements of $n$ in $Y$. The properties of the sets $Q(Y,X)$ are studied; several criteria in terms of these sets for $X$ to be a Hilbert space are established; in particular, generalizations of the well-known theorems of Rudin–Smith–Singer and Kakutani are proved.
@article{SM_1997_188_8_a3,
     author = {P. A. Borodin},
     title = {Quasiorthogonal sets and conditions for {a~Banach} space to be {a~Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {1171--1182},
     publisher = {mathdoc},
     volume = {188},
     number = {8},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Quasiorthogonal sets and conditions for a~Banach space to be a~Hilbert space
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1171
EP  - 1182
VL  - 188
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/
LA  - en
ID  - SM_1997_188_8_a3
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Quasiorthogonal sets and conditions for a~Banach space to be a~Hilbert space
%J Sbornik. Mathematics
%D 1997
%P 1171-1182
%V 188
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/
%G en
%F SM_1997_188_8_a3
P. A. Borodin. Quasiorthogonal sets and conditions for a~Banach space to be a~Hilbert space. Sbornik. Mathematics, Tome 188 (1997) no. 8, pp. 1171-1182. http://geodesic.mathdoc.fr/item/SM_1997_188_8_a3/