Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series
Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 621-638
Voir la notice de l'article provenant de la source Math-Net.Ru
For $p\in (0,1]$ conditions on a number sequence $\{\lambda _k\}_0^\infty$ are indicated ensuring that the multiplier operator $\sum _{k=0}^\infty c_k z^k \mapsto \sum _{k=0}^\infty \lambda _k c_k z^k$ is continuous in the Hardy space $H_p(D)$ (here $D$ can also be a polydisc $D^m$). Some sufficient conditions are also established. These results are used to find out the precise order of approximation of multiple power series by Bochner–Riesz means and to evaluate the $K$-functional for a pair of spaces related to the polyharmonic operator.
@article{SM_1997_188_4_a4,
author = {R. M. Trigub},
title = {Multipliers in {the~Hardy} spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series},
journal = {Sbornik. Mathematics},
pages = {621--638},
publisher = {mathdoc},
volume = {188},
number = {4},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/}
}
TY - JOUR AU - R. M. Trigub TI - Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series JO - Sbornik. Mathematics PY - 1997 SP - 621 EP - 638 VL - 188 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/ LA - en ID - SM_1997_188_4_a4 ER -
%0 Journal Article %A R. M. Trigub %T Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series %J Sbornik. Mathematics %D 1997 %P 621-638 %V 188 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/ %G en %F SM_1997_188_4_a4
R. M. Trigub. Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 621-638. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/