Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of summability methods for power series
Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 621-638

Voir la notice de l'article provenant de la source Math-Net.Ru

For $p\in (0,1]$ conditions on a number sequence $\{\lambda _k\}_0^\infty$ are indicated ensuring that the multiplier operator $\sum _{k=0}^\infty c_k z^k \mapsto \sum _{k=0}^\infty \lambda _k c_k z^k$ is continuous in the Hardy space $H_p(D)$ (here $D$ can also be a polydisc $D^m$). Some sufficient conditions are also established. These results are used to find out the precise order of approximation of multiple power series by Bochner–Riesz means and to evaluate the $K$-functional for a pair of spaces related to the polyharmonic operator.
@article{SM_1997_188_4_a4,
     author = {R. M. Trigub},
     title = {Multipliers in {the~Hardy} spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of  summability methods for power series},
     journal = {Sbornik. Mathematics},
     pages = {621--638},
     publisher = {mathdoc},
     volume = {188},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of  summability methods for power series
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 621
EP  - 638
VL  - 188
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/
LA  - en
ID  - SM_1997_188_4_a4
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of  summability methods for power series
%J Sbornik. Mathematics
%D 1997
%P 621-638
%V 188
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/
%G en
%F SM_1997_188_4_a4
R. M. Trigub. Multipliers in the~Hardy spaces $H_p(D^m)$ with $p\in (0,1]$ and approximation properties of  summability methods for power series. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 621-638. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a4/