Haar problem for sign-sensitive approximations
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 265-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Haar problem for sign-sensitive approximations consists in finding necessary and sufficient conditions for a finite-dimensional subspace $L$ of the space $C(E)$ of continuous functions on a compact subset $E$ of $\mathbb R$ and a sign-sensitive weight $p(x)=\bigl (p_-(x),p_+(x)\bigr )$, $x \in E$, ensuring that for each function $f$ in $L$ there exists a unique element of best approximation with weight $p$. Several conditions of this kind are established. These conditions are shown to be closely connected with the topological properties of the annihilators of the functions $p_-(x)$ and $p_+(x)$. In particular, the sign-sensitive weights $p=(p_-,p_+)$ are described such that the same condition as the one introduced by Haar for uniform approximations (that is, for $p(x) \equiv (1,1)$) serves the corresponding Haar problem.
@article{SM_1997_188_2_a4,
     author = {E. A. Sevast'yanov},
     title = {Haar problem for sign-sensitive approximations},
     journal = {Sbornik. Mathematics},
     pages = {265--297},
     year = {1997},
     volume = {188},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - Haar problem for sign-sensitive approximations
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 265
EP  - 297
VL  - 188
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/
LA  - en
ID  - SM_1997_188_2_a4
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T Haar problem for sign-sensitive approximations
%J Sbornik. Mathematics
%D 1997
%P 265-297
%V 188
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/
%G en
%F SM_1997_188_2_a4
E. A. Sevast'yanov. Haar problem for sign-sensitive approximations. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 265-297. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/

[1] Borel E., Lecons sur les fonctions de variables réelles, Gauthier-Villars, Paris, 1905 | Zbl

[2] Akhiezer N. I., Lektsii po teorii approksimatsii, Fizmatgiz, M., 1965

[3] Haar A., “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78 (1918), 293–311 | MR

[4] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[5] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[6] Dolzhenko E. P., Sevastyanov E. A., “Znakochuvstvitelnye approksimatsii. Prostranstvo znakochuvstvitelnykh vesov. Zhestkost i svoboda sistemy”, Dokl. AN., 332:6 (1993), 686–689 | MR | Zbl

[7] Galeev E. M., Tikhomirov V. M., Kratkii kurs teorii ekstremalnykh zadach, Izd-vo MGU, M., 1989 | Zbl

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[9] Ber R., Teoriya razryvnykh funktsii, Gostekhizdat, M.-L., 1932

[10] Bernshtein S., N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, ONTI, M.-L., 1937

[11] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977 | MR | Zbl

[12] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[13] Kolmogorov A. N., “Zamechanie po povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR

[14] Kuratovskii K., Topologiya, Mir, M., 1966 | MR

[15] Baire R., “Thése Ph. Sur les fonctions de variables réelles”, Ann. De Math. TURA ed. Appl. Sér. 3, 3, 1899 | Zbl

[16] Okstobi Dzh., Mera i kategoriya, Mir, M., 1974

[17] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[18] Rokafellar R., Vypuklyi analiz, Mir, M., 1973