Haar problem for sign-sensitive approximations
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 265-297

Voir la notice de l'article provenant de la source Math-Net.Ru

The Haar problem for sign-sensitive approximations consists in finding necessary and sufficient conditions for a finite-dimensional subspace $L$ of the space $C(E)$ of continuous functions on a compact subset $E$ of $\mathbb R$ and a sign-sensitive weight $p(x)=\bigl (p_-(x),p_+(x)\bigr )$, $x \in E$, ensuring that for each function $f$ in $L$ there exists a unique element of best approximation with weight $p$. Several conditions of this kind are established. These conditions are shown to be closely connected with the topological properties of the annihilators of the functions $p_-(x)$ and $p_+(x)$. In particular, the sign-sensitive weights $p=(p_-,p_+)$ are described such that the same condition as the one introduced by Haar for uniform approximations (that is, for $p(x) \equiv (1,1)$) serves the corresponding Haar problem.
@article{SM_1997_188_2_a4,
     author = {E. A. Sevast'yanov},
     title = {Haar problem for sign-sensitive approximations},
     journal = {Sbornik. Mathematics},
     pages = {265--297},
     publisher = {mathdoc},
     volume = {188},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - Haar problem for sign-sensitive approximations
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 265
EP  - 297
VL  - 188
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/
LA  - en
ID  - SM_1997_188_2_a4
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T Haar problem for sign-sensitive approximations
%J Sbornik. Mathematics
%D 1997
%P 265-297
%V 188
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/
%G en
%F SM_1997_188_2_a4
E. A. Sevast'yanov. Haar problem for sign-sensitive approximations. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 265-297. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a4/