The image in $H^2(Q^3;\mathbb R)$ of the~set of presymplectic forms with a~prescribed kernel
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 75-85

Voir la notice de l'article provenant de la source Math-Net.Ru

A new invariant $\Omega$ of a 1-distribution $\mathscr I$ on a closed 3-dimensional manifold $Q^3$ is defined as the domain in the second cohomology group $H^2(Q^3;\mathbb R)$ generated by the restrictions to $Q^3=Q^3\times \{0\}$ of all symplectic forms $\omega$ on $Q^3\times \mathbb R$ such that the kernel of the restriction $\omega \big |_{Q^3}$ is the 1-distribution $\mathscr I$ (that is, $\mathscr I$ is the characteristic distribution of this restriction). This invariant is calculated in the cases when the distribution $\mathscr I$ is non-integrable, Bott non-resonance integrable, and resonance integrable.
@article{SM_1997_188_1_a3,
     author = {B. S. Kruglikov},
     title = {The image in $H^2(Q^3;\mathbb R)$ of the~set of presymplectic forms with a~prescribed kernel},
     journal = {Sbornik. Mathematics},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a3/}
}
TY  - JOUR
AU  - B. S. Kruglikov
TI  - The image in $H^2(Q^3;\mathbb R)$ of the~set of presymplectic forms with a~prescribed kernel
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 75
EP  - 85
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a3/
LA  - en
ID  - SM_1997_188_1_a3
ER  - 
%0 Journal Article
%A B. S. Kruglikov
%T The image in $H^2(Q^3;\mathbb R)$ of the~set of presymplectic forms with a~prescribed kernel
%J Sbornik. Mathematics
%D 1997
%P 75-85
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a3/
%G en
%F SM_1997_188_1_a3
B. S. Kruglikov. The image in $H^2(Q^3;\mathbb R)$ of the~set of presymplectic forms with a~prescribed kernel. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a3/