On subgroup distortion in finitely presented groups
Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1617-1664 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that every computable function $G\to \mathbb N=\{0,1,\dots\}$ on a group $G$ (with certain necessary restrictions) can be realized up to equivalence as a length function of elements by embedding $G$ in an appropriate finitely presented group. As an example, the length of $g^n$, the $n$th power of an element $g$ of a finitely presented group, can grow as $n^{\theta }$ for each computable $\theta \in (0,1]$. This answers a question of Gromov [2]. The main tool is a refined version of the Higman embedding established in this paper, which preserves the lengths of elements.
@article{SM_1997_188_11_a2,
     author = {A. Yu. Ol'shanskii},
     title = {On subgroup distortion in finitely presented groups},
     journal = {Sbornik. Mathematics},
     pages = {1617--1664},
     year = {1997},
     volume = {188},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - On subgroup distortion in finitely presented groups
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1617
EP  - 1664
VL  - 188
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/
LA  - en
ID  - SM_1997_188_11_a2
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T On subgroup distortion in finitely presented groups
%J Sbornik. Mathematics
%D 1997
%P 1617-1664
%V 188
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/
%G en
%F SM_1997_188_11_a2
A. Yu. Ol'shanskii. On subgroup distortion in finitely presented groups. Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1617-1664. http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/

[1] Olshanskii A. Yu., “Distortion functions for subgroups”, Proc. Conf. on Geometric Group Theory (Canberra, July 1996), Walter de Gruyter, 1997 (to appear) | MR

[2] Gromov M., “Asymptotic invariants of infinite groups”, Geometric group theory, V. 2, London Math. Soc. Lecture Note Ser., 182, 1993, 1–125 | MR

[3] Gersten S., “Dehn functions and $l_1$-norms of finite presentations”, Algorithms and computations in combinatorial group theory, no. 23, eds. G. Baumslag, C. Miller, MSRI Publ.; Springer, 1993

[4] Bridson M., Fractional isoperimetric inequalities and subgroup distortion, Preprint, 1996 | MR

[5] Birget J.-C., Time complexity of the word problem for semigroups and the Higman embedding theorem, LITP 95/26, Institut Blaise Pascal–4, Place Jusseu – 75252 Paris Cedex 05

[6] Rotman J., An introduction to the theory of groups, 3rd ed., Allyn Bacon, 1984 | MR | Zbl

[7] Aanderaa S., “A proof of Higman embedding theorem using Britton extentions of groups”, Word problems, decision problems and the Burnside problem in group theory, North-Holland, Amsterdam, 1973, 1–18 | MR

[8] Birget J.-C., Rips E., Sapir M. V., Dehn functions of groups, Preprint, 1997

[9] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[10] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR