On subgroup distortion in finitely presented groups
Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1617-1664

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every computable function $G\to \mathbb N=\{0,1,\dots\}$ on a group $G$ (with certain necessary restrictions) can be realized up to equivalence as a length function of elements by embedding $G$ in an appropriate finitely presented group. As an example, the length of $g^n$, the $n$th power of an element $g$ of a finitely presented group, can grow as $n^{\theta }$ for each computable $\theta \in (0,1]$. This answers a question of Gromov [2]. The main tool is a refined version of the Higman embedding established in this paper, which preserves the lengths of elements.
@article{SM_1997_188_11_a2,
     author = {A. Yu. Ol'shanskii},
     title = {On subgroup distortion in finitely presented groups},
     journal = {Sbornik. Mathematics},
     pages = {1617--1664},
     publisher = {mathdoc},
     volume = {188},
     number = {11},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - On subgroup distortion in finitely presented groups
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1617
EP  - 1664
VL  - 188
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/
LA  - en
ID  - SM_1997_188_11_a2
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T On subgroup distortion in finitely presented groups
%J Sbornik. Mathematics
%D 1997
%P 1617-1664
%V 188
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/
%G en
%F SM_1997_188_11_a2
A. Yu. Ol'shanskii. On subgroup distortion in finitely presented groups. Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1617-1664. http://geodesic.mathdoc.fr/item/SM_1997_188_11_a2/