On pseudogeometric graphs of the partial geometries $pG_2(4,t)$
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1045-1060
Cet article a éte moissonné depuis la source Math-Net.Ru
An incidence system consisting of points and lines is called an $\alpha$-partial geometry of order $(s,t)$ if each line contains $s+1$ points, each point lies on $t+1$ lines (the lines intersect in at most one point), and for any point a not lying on a line $L$ there are exactly $\alpha$ lines passing through $\alpha$ and intersecting $L$ (this geometry is denoted by $pG_{\alpha }(s,t)$). The point graph of the partial geometry $pG_{\alpha }(s,t)$ is strongly regular with parameters: $v=(s+1)(1+st/\alpha )$, $k=s(t+1)$, $\lambda =(s-1)+(\alpha -1)t$ and $\mu =\alpha (t+1)$. A graph with the indicated parameters is called a pseudogeometric graph of the corresponding geometry. It is proved that a pseudogeometric graph of a partial geometry $pG_2(4,t)$ in which the $\mu$-subgraphs are regular graphs without triangles is the triangular graph $T(5)$, the quotient of the Johnson graph $J(8,4)$, or the McLaughlin graph.
@article{SM_1996_187_7_a5,
author = {A. A. Makhnev},
title = {On pseudogeometric graphs of the~partial geometries $pG_2(4,t)$},
journal = {Sbornik. Mathematics},
pages = {1045--1060},
year = {1996},
volume = {187},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a5/}
}
A. A. Makhnev. On pseudogeometric graphs of the partial geometries $pG_2(4,t)$. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1045-1060. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a5/
[1] Brauver A. E., van Lint I. Kh., “Silno regulyarnye grafy i chastichnye geometrii”, Kibernet. sb., 24 (1987), 186–229
[2] Zyulyarkina N. D., Makhnev A. A., “O silno regulyarnykh lokalno reshetchatykh grafakh”, Diskret. matem., 5:4 (1993), 145–150 | MR | Zbl
[3] Makhnev A. A., O silno regulyarnykh grafakh s parametrami $(75,32,10,16)$ i $(95,40,12,20)$, Issledovaniya po chistoi i prikladnoi matematike. Preprint Instituta matematiki i mekhaniki UrO RAN, Ekaterinburg, 1995, s. 73
[4] Goethals J.-M., Seidel J. J., “The regular two graph on 276 points”, Discrete Math., 12:1 (1975), 143–158 | DOI | MR | Zbl