Growth of entire functions represented by Dirichlet series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1545-1560
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let, $\displaystyle F(z)=\sum _{n=1}^\infty a_ne^{\lambda _nz}$ be an entire function represented in the whole of the plane by an absolutely convergent Dirichlet series such that
$$
0\leqslant \lambda _1\lambda _2\dotsb ,\qquad 
\varlimsup _{n\to \infty }\frac {\ln n}{\lambda _n}=\mu \in [0,+\infty ).
$$
The  connection between the growth of the quantity
$$
M(F;x)=\sup \bigl \{|F(x+iy)|:|y|+\infty \bigr \},\qquad x\to +\infty.
$$
End the behaviour of $|a_n|$ and $\lambda_n$ as $n\to \infty$ is described in general form.
			
            
            
            
          
        
      @article{SM_1996_187_10_a6,
     author = {V. A. Oskolkov and L. I. Kalinichenko},
     title = {Growth of entire functions represented by {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {1545--1560},
     publisher = {mathdoc},
     volume = {187},
     number = {10},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a6/}
}
                      
                      
                    V. A. Oskolkov; L. I. Kalinichenko. Growth of entire functions represented by Dirichlet series. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1545-1560. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a6/
