Growth of entire functions represented by Dirichlet series
Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1545-1560

Voir la notice de l'article provenant de la source Math-Net.Ru

Let, $\displaystyle F(z)=\sum _{n=1}^\infty a_ne^{\lambda _nz}$ be an entire function represented in the whole of the plane by an absolutely convergent Dirichlet series such that $$ 0\leqslant \lambda _1\lambda _2\dotsb ,\qquad \varlimsup _{n\to \infty }\frac {\ln n}{\lambda _n}=\mu \in [0,+\infty ). $$ The connection between the growth of the quantity $$ M(F;x)=\sup \bigl \{|F(x+iy)|:|y|+\infty \bigr \},\qquad x\to +\infty. $$ End the behaviour of $|a_n|$ and $\lambda_n$ as $n\to \infty$ is described in general form.
@article{SM_1996_187_10_a6,
     author = {V. A. Oskolkov and L. I. Kalinichenko},
     title = {Growth of entire functions represented by {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {1545--1560},
     publisher = {mathdoc},
     volume = {187},
     number = {10},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_10_a6/}
}
TY  - JOUR
AU  - V. A. Oskolkov
AU  - L. I. Kalinichenko
TI  - Growth of entire functions represented by Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1545
EP  - 1560
VL  - 187
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_10_a6/
LA  - en
ID  - SM_1996_187_10_a6
ER  - 
%0 Journal Article
%A V. A. Oskolkov
%A L. I. Kalinichenko
%T Growth of entire functions represented by Dirichlet series
%J Sbornik. Mathematics
%D 1996
%P 1545-1560
%V 187
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_10_a6/
%G en
%F SM_1996_187_10_a6
V. A. Oskolkov; L. I. Kalinichenko. Growth of entire functions represented by Dirichlet series. Sbornik. Mathematics, Tome 187 (1996) no. 10, pp. 1545-1560. http://geodesic.mathdoc.fr/item/SM_1996_187_10_a6/