On the theory of epigroups. I
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 485-512 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Epigroups are viewed as unary semigroups with a pseudoinverse operation. Criteria are found for the existence of a partition of an epigroup into unipotent subepigroups, the inheritability of this property by all homomorphic images of an epigroup, and the decomposability of an epigroup into a band (semilattice) of Archimedean epigroups. Here, and in the second part of this paper to follow, the focus is on characterizations in terms of 'prohibited' objects, mainly epifactors, i.e., homomorphic images of subepigroups; attention is also paid to characterizations of the epigroups under consideration in the language of identities, and possible prospects for future investigations on varieties of epigroups are outlined.
@article{SM_1995_82_2_a14,
     author = {L. N. Shevrin},
     title = {On the theory of {epigroups.~I}},
     journal = {Sbornik. Mathematics},
     pages = {485--512},
     year = {1995},
     volume = {82},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a14/}
}
TY  - JOUR
AU  - L. N. Shevrin
TI  - On the theory of epigroups. I
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 485
EP  - 512
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a14/
LA  - en
ID  - SM_1995_82_2_a14
ER  - 
%0 Journal Article
%A L. N. Shevrin
%T On the theory of epigroups. I
%J Sbornik. Mathematics
%D 1995
%P 485-512
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a14/
%G en
%F SM_1995_82_2_a14
L. N. Shevrin. On the theory of epigroups. I. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 485-512. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a14/

[1] Rees D., “On semi-groups”, Proc Camb. Phil. Soc., 36 (1940), 387–400 | DOI | MR | Zbl

[2] Clifford A. H., “Semigroups admitting relative inverses”, Ann Math., 42 (1941), 1037–1049 | DOI | MR | Zbl

[3] Schwarz S., “K teorii periodicheskikh polugrupp”, Chekhosl. matem. zhurn., 3 (1953), 7–21 | MR | Zbl

[4] Munn W. D., “Pseudo-inverses in semigroups”, Proc. Camb. Phil. Soc., 57 (1961), 247–250 | DOI | MR | Zbl

[5] Drazin M. P., “Pseudo inverses in associative rings and semigroups”, Amer. Math. Mon., 65 (1958), 506–514 | DOI | MR | Zbl

[6] Shevrin L. N., “Polugruppy”, Obschaya algebra, gl. IV, T. 2, ed. L. A. Skornyakov, Nauka, M., 1991 | Zbl

[7] Shevrin L. N., “O razlozhenii kvaziperiodicheskoi polugruppy v svyazku arkhimedovykh polugrupp”, 14 Vsesoyuzn. algebr. konf., Tezisy dokl., ch. 1, Novosibirsk, 1977, 104–105

[8] Shevrin L. N., “Kvaziperiodicheskie polugruppy, obladayuschie razbieniem na unipotentnye polugruppy”, XVI Vsesoyuzn. algebr. konf., Tezisy, ch. 1, Leningrad, 1981, 177–178

[9] Shevrin L. N., “Kvaziperiodicheskie polugruppy, razlozhimye v svyazku arkhimedovykh polugrupp”, XVI Vsesoyuzn. algebr. konf., Tezisy, ch. 1, Leningrad, 1981, 188

[10] Shevrin L. N., “O razlozhenii kvaziperiodicheskikh polugrupp v svyazki”, XVII Vsesozyun. algebr. konf., Tezisy soobsch., ch. 2, Minsk, 1983, 267–268

[11] Shevrin L. N., Sukhanov E. V., “Strukturnye aspekty teorii mnogoobrazii polugrupp”, Izv. VUZov. Matematika, 1989, no. 6, 3–39 | MR | Zbl

[12] Shevrin L. N., Ovsyannikov A. Ya., Polugruppy i ikh podpolugruppovye reshetki, ch. 1, Izd-vo Ural. un-ta, Sverdlovsk, 1990 ; ч. 2, 1991 | MR | Zbl

[13] Putcha M., “Semilattice decompositions of semigroups”, Semigroup Forum, 6 (1973), 12–34 | DOI | MR | Zbl

[14] Petrich M., Introduction to semigroups, Charles E. Merrill, Colymbus, Ohio, 1973 | MR | Zbl

[15] Sapir M. V., “Problemy bernsaidovskogo tipa i konechnaya baziruemost v mnogoobraziyakh polugrupp”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 319–340 | MR | Zbl

[16] Sapir M. V., “Suschestvenno beskonechno baziruemye konechnye polugruppy”, Matem. sb., 133:2 (1987), 154–166

[17] Volkov M. V., Sapir M. V., “HFB property and structure of semigroups”, Contribution to general algebra 6, Hölder–Pichler–Tempsky, Wien; B. G. Teubner, Stutgart, 1988, 303–310 | MR

[18] Sverdlovskaya tetrad. Nereshennye zadachi teorii polugrupp, vtoroe izdanie, Ural. un-t, Sverdlovsk, 1979; выпуск третий, 1989

[19] Shevrin L. N., Ovsyannikov A. J., “Finitely assembled semigroups and ascending chain condition for subsemigroups”, Monash conf. on semigroup theory in honour G. B. Preston, World Scientific Publ. Co., Singapore–New Jersy–London–Hong-Kong, 1991, 269–284 | MR | Zbl

[20] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, T. 1, 2, Mir, M., 1972 | Zbl

[21] Hall T. E., Munn W. D., “Semigroups satisfying minimal conditions, II”, Glasgow Math. J., 20 (1979), 133–140 | DOI | MR | Zbl

[22] Anderson L., Hunter R., Koch R., “Some results on stability in semigroups”, Trans. Amer. Soc., 117 (1965), 521–529 | DOI | MR | Zbl

[23] Madison B. L., Mukherjee T. K., Sen M. K., “Periodic properties of groupbound semigroups, II”, Semigroup Forum, 26 (1983), 229–236 | DOI | MR | Zbl

[24] Prosvirov A. S., “O periodicheskikh polugruppakh”, Matem. zap. Ural. un-ta, T. 8, Tetr. 1, 1971, 77–94 | MR | Zbl

[25] Tretyakova E. G., “O svobodnoi dvuporozhdennoi kliffordovoi polugruppe”, Mezhdunar. konf. po algebre, posv. pamyati A. I. Shirshova, Tezisy dokl. po logike i univ. algebram, prikl. algebre, Novosibirsk, 1991, 145

[26] Schützenberger H. P., “Sur le produit de concatenation non ambigu”, Semigroup Forum, 13 (1976), 47–76 | DOI | MR

[27] Shevrin L. N., Volkov M. V., “Tozhdestva polugrupp”, Izv. VUZov. Matematika, 1985, no. 11, 3–47 | MR | Zbl

[28] Chrislock J. A., “A certain class of identities on semigroups”, Proc. Amer. Math. Soc., 21 (1969), 189–190 | DOI | MR | Zbl

[29] Pastijn F. J., Trotter P. G., “Lattices of completely regular varieties”, Pacif. J. Math., 119 (1985), 191–214 | MR | Zbl

[30] Gerhard J. A., “Free completely regular semigroups. Word problem”, J. Algebra, 82 (1983), 143–156 | DOI | MR

[31] Trotter P. G., “Free completely regular semigroups”, Glasgow Math. J., 25 (1984), 241–254 | DOI | MR | Zbl

[32] Kadourek J., Polák L., “On the word problem for free completely regular semigroups”, Semigroup Forum, 34 (1986), 138 | DOI | MR | Zbl

[33] Yamada M., “A remark on periodic semigroups”, Bull. Shimane Univ., 9 (1959), 1–5 | MR

[34] Galbiati J. L., Veronesi M. L., “Sui semigruppi che sono un band di $t$-semigruppi”, Instituto Lombardo (Rend sci.), 114 (1980), 217–234 | MR | Zbl

[35] Prosvirov A. S., “O periodicheskikh polugruppakh, kazhdyi klass krucheniya kotorykh ne yavlyaetsya podpolugruppoi”, Vsesoyuzn. simpoz. po teorii polugrupp, Tezisy soobsch., Sverdlovsk, 1978, 73

[36] Galbiati J. L., Veronesi M. L., “On quasi completely regular semigroups”, Semigroup Forum, 29 (1984), 271–276 | DOI | MR

[37] Bogdanovic̀ S., Semigroups with a system of subsemigroups, University of Novi Sad, Novi Sad, 1985 | MR

[38] Sapir M. V., Sukhanov E. V., “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. VUZov. Matematika, 1981, no. 4, 48–55 | MR | Zbl

[39] Pastijn F., “The lattice of completely regular semigroup varieties”, J. Austral. Math. Soc. (Series A), 49 (1990), 24–42 | DOI | MR | Zbl

[40] Pastijn F., “Commuting fully invariant congruences on free completely regular semigroups”, Trans. Amer. Math. Soc., 323:1 (1991), 79–92 | DOI | MR | Zbl

[41] Petrich M., Reilly N. R., “The modularity of the lattice of the varieties completely regular semigroups and related representations”, Glasgow Math. J., 32 (1990), 137–152 | DOI | MR | Zbl

[42] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Izv. VUZov. Matematika, 1989, no. 6, 51–60

[43] Volkov M. V., “Modulyarnye mnogoobraziya nilpolugrupp”, Vsesoyuznaya shkola po teorii mnogoobrazii algebr. sistem, Tezisy soobsch., Magnitogorsk, 1990, 9–10 | Zbl

[44] Volkov M. V., Ershova T. A., “The lattice of varieties of semigroups with completely regular square”, Monach conf. on semigroup theory in honour of G. B. Preston, World Scientific Publ. Co., Singapoure–New Jersey–London–Hong-Kong, 1991, 306–322 | MR | Zbl

[45] Shevrin L. N., “O polugruppakh, vse podpolugruppy kotorykh nilpotentny”, Sib. matem. zhurn., 2 (1961), 936–942 | MR | Zbl