The Eilenberg--Borsuk theorem for mappings into an~arbitrary complex
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 467-475

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Eilenberg–Borsuk theorem on extension of partial mappings into a sphere is generalized to the case of an arbitrary complex $K$. It is formulated in terms of extraordinary dimension theory, which is developed in the present paper. When $K = K(G,\, k)$ is an Eilenberg–MacLane complex, the result can be expressed in terms of cohomological dimension theory. For partial mappings $\varphi\colon A\to K(G,\, k)$ of an $n$-manifold $M$, the following is obtained: Theorem. If $k$, then there exists a compactum $X\subset M$ of dimension $n-k-1$, such that the mapping $\varphi$ extends to $M-X$ and for every abelian group $\pi$ with $\pi\otimes G=0$ the cohomological dimension of $X$ with coefficients in $\pi$ does not exceed $n-k-2$. Thus, in comparison with the classical Eilenberg–Borsuk theorem, there is obtained an additional condition as to the cohomological dimension of $X$.
@article{SM_1995_81_2_a8,
     author = {A. N. Dranishnikov},
     title = {The {Eilenberg--Borsuk} theorem for mappings into an~arbitrary complex},
     journal = {Sbornik. Mathematics},
     pages = {467--475},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - The Eilenberg--Borsuk theorem for mappings into an~arbitrary complex
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 467
EP  - 475
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/
LA  - en
ID  - SM_1995_81_2_a8
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T The Eilenberg--Borsuk theorem for mappings into an~arbitrary complex
%J Sbornik. Mathematics
%D 1995
%P 467-475
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/
%G en
%F SM_1995_81_2_a8
A. N. Dranishnikov. The Eilenberg--Borsuk theorem for mappings into an~arbitrary complex. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 467-475. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/