The Eilenberg–Borsuk theorem for mappings into an arbitrary complex
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 467-475 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Eilenberg–Borsuk theorem on extension of partial mappings into a sphere is generalized to the case of an arbitrary complex $K$. It is formulated in terms of extraordinary dimension theory, which is developed in the present paper. When $K = K(G,\, k)$ is an Eilenberg–MacLane complex, the result can be expressed in terms of cohomological dimension theory. For partial mappings $\varphi\colon A\to K(G,\, k)$ of an $n$-manifold $M$, the following is obtained: Theorem. If $k, then there exists a compactum $X\subset M$ of dimension $n-k-1$, such that the mapping $\varphi$ extends to $M-X$ and for every abelian group $\pi$ with $\pi\otimes G=0$ the cohomological dimension of $X$ with coefficients in $\pi$ does not exceed $n-k-2$. Thus, in comparison with the classical Eilenberg–Borsuk theorem, there is obtained an additional condition as to the cohomological dimension of $X$.
@article{SM_1995_81_2_a8,
     author = {A. N. Dranishnikov},
     title = {The {Eilenberg{\textendash}Borsuk} theorem for mappings into an~arbitrary complex},
     journal = {Sbornik. Mathematics},
     pages = {467--475},
     year = {1995},
     volume = {81},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - The Eilenberg–Borsuk theorem for mappings into an arbitrary complex
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 467
EP  - 475
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/
LA  - en
ID  - SM_1995_81_2_a8
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T The Eilenberg–Borsuk theorem for mappings into an arbitrary complex
%J Sbornik. Mathematics
%D 1995
%P 467-475
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/
%G en
%F SM_1995_81_2_a8
A. N. Dranishnikov. The Eilenberg–Borsuk theorem for mappings into an arbitrary complex. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 467-475. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a8/

[1] Eilenberg S., “Un theoreme de la dualite”, Fund. Math., 26 (1936), 280–282 | Zbl

[2] Borsuk K., “Un theoreme sur la prolongements des transformations”, Fund. Math., 29 (1937), 161–166 | MR | Zbl

[3] Edwards R. D., “Demension theory, I”, Lect. notes in Math., no. 438, 1975, 195–211 | MR | Zbl

[4] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR

[5] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, UMN, 23:5 (1968), 3–49 | MR | Zbl

[6] Dranishnikov A. N., “Gomologicheskaya teoriya razmernosti”, UMN, 43:4 (1988), 11–63 | MR | Zbl

[7] Dranishnikov A. N., “Prodolzhenie otobrazhenii v cw-kompleksy”, Matem. sb., 182:9 (1991), 1300–1310 | MR

[8] Dranishnikov A. N., Repovs D., Schepin E. V., “On approximation and embedding problems for cohomological dimension”, Topol. Appl., 1993 | MR

[9] Dranishnikov A. N., “On intersection of compacta in Euclidean space, II”, Proc. Amer. Math. Soc., 113 (1991), 1149–1154 | DOI | MR | Zbl

[10] Dydak J., Union theorem for cohomological dimension: a simple counterexample, Preprint. Univ. Tennessee, Knoxville, 1992 | MR

[11] Dranishnikov A. N., Repovs D., Schepin E. V., On the failure of the Urysohn-Menger sum formula for cohomological dimension, Preprint, Ljubljana, 1992

[12] Rubin L. R., “Characterizing cohomological dimension: The cohomological dimension of $A \cup B$”, Topol. Appl., 40 (1991), 233–263 | DOI | MR | Zbl

[13] Dydak J., Walsh J. J., Aspects of cohomological dimension for principal ideal domains, Preprint, 1991

[14] Dranishnikov A. N., Repovs D., The Uryshon-Menger formula: An extension of Dydak–Walsh theorem to dimension one, Preprint, Ljubljana, 1992

[15] Dydak J., Cohomological dimension and metrizable spaces, II, Preprint. Univ. Tennessee, Knoxville, 1992 | MR | MR

[16] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti, Nauka, M., 1975 | MR

[17] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–61 | MR