On two problems concerning extension groups of Abelian groups
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 59-76

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the extension group $\operatorname{Ext}(A,C)$ of an abelian group $C$ by an abelian group $A$. In § 1 the problem of how the groups $A$, $B$ are related to one another if $\operatorname{Ext}(A,C)\cong\operatorname{Ext}(B,C)$ for any group $C$ is completely solved for a torsion-free group $A$ of finite rank (Theorem 1.7). Also studied are conditions under which the group $\operatorname{Ext}(A,B)$ is torsion-free. Theorem 2.5 describes the torsion-free groups $A$, $B$ of finite rank with the property, more general than the situation in [13], that both $\operatorname{Ext}(A,B)$ and $\operatorname{Ext}(B,A)$ are torsion-free.
@article{SM_1995_81_1_a3,
     author = {P. A. Krylov},
     title = {On two problems concerning extension groups of {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {59--76},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/}
}
TY  - JOUR
AU  - P. A. Krylov
TI  - On two problems concerning extension groups of Abelian groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 59
EP  - 76
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/
LA  - en
ID  - SM_1995_81_1_a3
ER  - 
%0 Journal Article
%A P. A. Krylov
%T On two problems concerning extension groups of Abelian groups
%J Sbornik. Mathematics
%D 1995
%P 59-76
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/
%G en
%F SM_1995_81_1_a3
P. A. Krylov. On two problems concerning extension groups of Abelian groups. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/