On two problems concerning extension groups of Abelian groups
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 59-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the extension group $\operatorname{Ext}(A,C)$ of an abelian group $C$ by an abelian group $A$. In § 1 the problem of how the groups $A$, $B$ are related to one another if $\operatorname{Ext}(A,C)\cong\operatorname{Ext}(B,C)$ for any group $C$ is completely solved for a torsion-free group $A$ of finite rank (Theorem 1.7). Also studied are conditions under which the group $\operatorname{Ext}(A,B)$ is torsion-free. Theorem 2.5 describes the torsion-free groups $A$, $B$ of finite rank with the property, more general than the situation in [13], that both $\operatorname{Ext}(A,B)$ and $\operatorname{Ext}(B,A)$ are torsion-free.
@article{SM_1995_81_1_a3,
     author = {P. A. Krylov},
     title = {On two problems concerning extension groups of {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {59--76},
     year = {1995},
     volume = {81},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/}
}
TY  - JOUR
AU  - P. A. Krylov
TI  - On two problems concerning extension groups of Abelian groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 59
EP  - 76
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/
LA  - en
ID  - SM_1995_81_1_a3
ER  - 
%0 Journal Article
%A P. A. Krylov
%T On two problems concerning extension groups of Abelian groups
%J Sbornik. Mathematics
%D 1995
%P 59-76
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/
%G en
%F SM_1995_81_1_a3
P. A. Krylov. On two problems concerning extension groups of Abelian groups. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 59-76. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a3/

[1] Fuks L., Beskonechnye gruppy, T. 1, Mir, M., 1974

[2] Mishina A. P., “Abelevy gruppy”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 17, VINITI, M., 1979, 3–63 | MR

[3] Mishina A. P., “Abelevy gruppy”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 23, VINITI, M., 1985, 51–118 | MR

[4] Moskalenko A. I., “Ob opredelyaemosti schetnoi periodicheskoi gruppy gruppami rasshirenii”, Abelevy gruppy i moduli, Izd-vo Tomsk. un-ta, Tomsk, 1991, 86–90 | MR

[5] Goeters H. P., “Finitely faithful $S$-groups”, Comm. Algebra, 17:6 (1989), 1291–1302 | DOI | MR | Zbl

[6] Goeters H. P., “When to two groups alwais have isomorphic extension groups?”, Rocky Mountain J. Math., 20:1 (1990), 129–141 | DOI | MR

[7] Krylov P. A., “Ob izomorfizme grupp rasshirenii abelevykh grupp”, Mezhdunar. konf. po algebre, Tez. dokl. po teorii kolets, algebr i modulei, Barnaul, 1991, 60 | Zbl

[8] Goeters H. P., “Torsion-free abelian groups with finite rank endomorphism rings”, Quastiones Math., 14:1 (1991), 111–115 | MR | Zbl

[9] Warfield R. B., “Extensions of torsion-free abelian groups of finite rank”, Arch. Math., 23:2 (1972), 145–150 | DOI | MR | Zbl

[10] Walker C. P., “Properties of $\operatorname {Ext}$ and quasisplitting of abelian groups”, Acta Math. Acad. Sci., 15, Hungar, 1964, 157–160 | MR | Zbl

[11] Goeters H. P., “When $\operatorname {Ext}(A,B)$ torsion-free?, and related problems”, Comm. Algebra, 16:8 (1988), 1605–1619 | DOI | MR | Zbl

[12] Faticoni T. G., Goeters P., “On torsion-free $\operatorname {Ext}$”, Comm. Algebra, 16:9 (1988), 1853–1876 | DOI | MR | Zbl

[13] Arnold D. M., “Endomorphism rings and subgroups of finite rank torsion-free abelian groups”, Rocky Mountain J. Math., 12:2 (1982), 241–256 | MR | Zbl

[14] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Novosibirsk, 1991

[15] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977

[16] Arnold D. M., Finite rank torsion-free abelian groups and rings, Lect. Notes in Math., 931, 1982 | MR | Zbl

[17] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[18] Krylov P. A., “Radikaly kolets endomorfizmov abelevykh grupp bez krucheniya”, Matem. sb., 95(137) (1974), 214–228 | MR | Zbl

[19] Warfield R. B., “Homomorphisms and duality for torsion-free groups”, Math. Z., 107 (1968), 189–200 | DOI | MR | Zbl

[20] Fomin A. A., “Abelevy gruppy bez krucheniya konechnogo ranga s tochnostyu do kvaziizomorfizma”, Mezhdunar. konf. po algebre, Tez. dokl. po teorii grupp, Novosibirsk, 1989, 128