Finite $p$-groups admitting $p$-automorphisms with few fixed points
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 435-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem is proved: if a finite $p$-group $P$ admits an automorphism of order $p^k$ having exactly $p^n$ fixed points, then it contains a subgroup of $(p, k,n)$-bounded index that is solvable of $(p,k)$-bounded derived length. The proof uses Kreknin's theorem stating that a Lie ring admitting a regular (that is, without nontrivial fixed points) automorphism of finite order $m$, is solvable of $m$-bounded derived length $f(m)$. Some techniques from the theory of powerful $p$-groups are also used, especially, from a recent work of Shalev, who proved that, under the hypothesis of the theorem, the derived length of $P$ is bounded in terms of $p$, $k$, and $n$. The following general proposition is also used (this proposition is proved on the basis of Kreknin's theorem with the help of the Mal'tsev correspondence, given by the Baker–Hausdorff formula): if a nilpotent group $G$ of class $c$ admits an automorphism $\varphi$ of finite order $m$, then, for some $(c,m)$-bounded number $N=N(c,m)$, the derived subgroup $(G^N)^{(f(m))}$ is contained in the normal closure $\langle C_G(\varphi)^G\rangle$ of the centralizer $C_G(\varphi)$. The scheme of the proof of the theorem is as follows. Standard arguments show that $P$ may be assumed to be a powerful $p$-group. Next, it is proved that $P^{f(p^k)}$ is nilpotent of $(p,k,n)$-bounded class. Then the proposition is applied to $P^{f(p^k)}$. There exist explicit upper bounds for the functions from the statement of the theorem.
@article{SM_1995_80_2_a8,
     author = {E. I. Khukhro},
     title = {Finite $p$-groups admitting $p$-automorphisms with few fixed points},
     journal = {Sbornik. Mathematics},
     pages = {435--444},
     year = {1995},
     volume = {80},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a8/}
}
TY  - JOUR
AU  - E. I. Khukhro
TI  - Finite $p$-groups admitting $p$-automorphisms with few fixed points
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 435
EP  - 444
VL  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a8/
LA  - en
ID  - SM_1995_80_2_a8
ER  - 
%0 Journal Article
%A E. I. Khukhro
%T Finite $p$-groups admitting $p$-automorphisms with few fixed points
%J Sbornik. Mathematics
%D 1995
%P 435-444
%V 80
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a8/
%G en
%F SM_1995_80_2_a8
E. I. Khukhro. Finite $p$-groups admitting $p$-automorphisms with few fixed points. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 435-444. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a8/

[1] Kreknin V. A., “Razreshimost algebr Li s regulyarnymi avtomorfizmami konechnogo perioda”, DAN SSSR, 150 (1963), 467–469 | MR | Zbl

[2] Lubotzky A., Mann A., “Powerful $ $-groups. I: finite groups”, J. Algebra, 105 (1987), 484–505 | DOI | MR | Zbl

[3] Dixon J. D., du Sautoy M. P. F., Mann A., Segal D., Analytic pro-$p$-groups, Camdridge Univ. Press, 1991 | MR

[4] Shalev A., On almost fixed point free automorphisms, Preprint, Oxford – London, 1991 | MR

[5] Alperin J., “Automorphisms of solvable groups”, Proc. Amer. Math. Soc., 13 (1962), 175–180 | DOI | MR | Zbl

[6] Higman G., “Groups and rings which have automorphisms without non-trivial fixed elements”, J. London Math. Soc., 32 (1957), 321–334 | DOI | MR | Zbl

[7] Kreknin V. A., Kostrikin A. I., “Algebry Li s regulyarnymi avtomorfizmami”, DAN SSSR, 149 (1963), 249–251 | MR | Zbl

[8] Khukhro E. I., “Konechnye $p$-gruppy, dopuskayuschie avtomorfizm poryadka $p$ s malym chislom nepodvizhnykh tochek”, Matem. zametki, 38:5 (1985), 652–657 | MR | Zbl

[9] Makarenko N. Yu., “O pochti regulyarnykh avtomorfizmakh prostogo poryadka”, Sibir. matem. zhurn., 33:5 (1992), 206–208 | MR | Zbl

[10] Shepherd R., Ph. D. Thesis, Univ. of Chicago, 1971

[11] Leedham-Green C. R., McKay S., “On $p$-groups of maximal class, I”, Quart. J. Math. Oxford Ser. (2), 27:107 (1976), 297–311 | DOI | MR | Zbl

[12] McKay S., “On the structure of a special class of $p$-groups”, Quart. J. Math. Oxford Ser. (2), 38 (1987), 489–502 | DOI | MR | Zbl

[13] Kiming I., “Structure and derived length of finite $p$-groups possessing an automorphism of $p$-power order having exactly $p$ fixed points”, Math. Scand., 62 (1988), 153–172 | MR | Zbl

[14] Kovács L. G., “Groups with regular automorphisms of order four”, Math. Z., 75 (1961), 277–294 | DOI | MR | Zbl

[15] Hartley B., “Centralizers in locally finite groups”, Proc. Int. Conf. Group Theory Bressanone (Brixen, 1986), Lecture Notes in Math., 1281, Springer, Berlin, 1987 | MR

[16] Maltsev A. I., “Nilpotentnye gruppy bez krucheniya”, Izv. AN SSSR, ser. matem., 13 (1949), 201–212 | MR | Zbl

[17] Lazard M., “Sur les groupes nilpotents et les anneaux de Lie”, Ann. Sci. École Norm. Supr., 71 (1954), 101–190 | MR | Zbl

[18] Burbaki N., Gruppy i algebry Li, Gl. 2–3. Svobodnye algebry Li i gruppy Li, Mir, M., 1978 | MR

[19] Khukhro E. I., Nilpotent groups and their automorphisms, W. de Gruyter Verlag, Berlin, 1992 | MR

[20] Huppert B., Blackburn N., Finite Groups, V. II, Springer, Berlin, 1982 | MR

[21] Blackburn N., “Conjugacy in nilpotent groups”, Proc. Amer. Math. Soc., 16 (1965), 143–148 | DOI | MR | Zbl

[22] Shalev A., The structure of finite $ $-groups and a constructive proof of the coclass conjecture, Preprint, Jerusalem Univ., 1992