On a method of studying certain problems in perturbation theory
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 507-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new algebraic method for solving certain perturbation and bifurcation problems is presented. In contrast to known classical results, the algorithm proposed here allows one to solve the indicated problems more simply and constructively in a rather general situation, including a multidimensional perturbation, and also in the presence of multiple points in the spectrum of the limit operator. In bifurcation theory the indicated method offers the possibility of finding the solution analytically with required accuracy, allowing one to bypass the traditional (in essence graphic) method of Newton diagrams. In the theory of gyroscopes a simpler and at the same time more rigorous method for determining oscillation frequencies of an annular nonideal resonator is found with the aid of the new approach.
@article{SM_1995_80_2_a12,
     author = {Yu. A. Konyaev},
     title = {On a method of studying certain problems in perturbation theory},
     journal = {Sbornik. Mathematics},
     pages = {507--517},
     year = {1995},
     volume = {80},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a12/}
}
TY  - JOUR
AU  - Yu. A. Konyaev
TI  - On a method of studying certain problems in perturbation theory
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 507
EP  - 517
VL  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a12/
LA  - en
ID  - SM_1995_80_2_a12
ER  - 
%0 Journal Article
%A Yu. A. Konyaev
%T On a method of studying certain problems in perturbation theory
%J Sbornik. Mathematics
%D 1995
%P 507-517
%V 80
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a12/
%G en
%F SM_1995_80_2_a12
Yu. A. Konyaev. On a method of studying certain problems in perturbation theory. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 507-517. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a12/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Voevodin V. V., Lineinaya algebra, Nauka, M., 1974 | MR | Zbl

[3] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[4] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[5] Fridrikhs K., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[7] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR

[8] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[9] Zhuravlev V. F., Klimov D. M., Volnovoi tverdotelnyi giroskop, Nauka, M., 1985 | Zbl

[10] Konyaev Yu. A., Teoriya vozmuschenii v prikladnykh zadachakh, Iz-vo MEI, M., 1990

[11] Aleksandrov A. M., Konyaev Yu. A., “Asimptoticheskii metod opredeleniya chastot kolebanii neidealnogo rezonatora.”, Tez. dokl. Vses. konf. “Sovremennye problemy fiziki i ee prilozheniya”, M., 1990, 64 | Zbl