@article{SM_1995_186_9_a1,
author = {M. L. Gerver and E. A. Kudryavtseva},
title = {A theorem on order relations generated by totally positive kernels},
journal = {Sbornik. Mathematics},
pages = {1241--1269},
year = {1995},
volume = {186},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/}
}
M. L. Gerver; E. A. Kudryavtseva. A theorem on order relations generated by totally positive kernels. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1241-1269. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/
[1] Gerver M. L., Markushevich V. M., “Issledovanie neodnoznachnosti pri opredelenii po godografu skorosti rasprostraneniya seismicheskoi volny”, DAN SSSR, 163:6 (1965), 1377–1380
[2] Gerver M. L., Markushevich V. M., “Determination of seismic wave velocity from the travel-time curve”, Geophys. J. R. astr. Soc., 11 (1966), 165–173 | Zbl
[3] Gerver M. L., Markushevich V. M., “Opredelenie po godografu skorosti rasprostraneniya seismicheskoi volny”, Metody i programmy dlya analiza seismicheskikh nablyudenii, Vychisl. seismologiya, 3, Nauka, M., 1967, 3–51
[4] Gerver M. L., “Teoremy sravneniya v odnomernoi obratnoi kinematicheskoi zadache”, Teoriya i algoritmy interpretatsii geofizicheskikh dannykh, Vychisl. seismologiya, 22, Nauka, M., 1989, 127–137
[5] Gerver M. L., “Volnovody i ustoichivye mnogochleny, I”, Kompyuternyi analiz geofizicheskikh polei, Vychisl. seismologiya, 23, Nauka, M., 1990, 182–205
[6] Gerver M. L., “Volnovody i ustoichivye mnogochleny, II”, Sovremennye metody interpretatsii seismologicheskikh dannykh, Vychisl. seismologiya, 24, Nauka, M., 1991, 102–148
[7] Gerver M. L., “Ratsionalnye approksimatsii, ustoichivye mnogochleny i rassloeniya v zadache poiska samogo shirokogo volnovoda”, Geodinamika i prognoz zemletryasenii, Vychisl. seismologiya, 26, Nauka, M., 1994, 176–201
[8] Gerver M. L., Suschestvovanie i edinstvennost maksimuma i teoremy o konusakh $l$-approksimatsiyakh i rassloeniyakh dlya odnogo klassa ekstremalnykh zadach, Preprint, MITP RAN, 1994
[9] Gerver M. L., Hierarchy and Influence Zones for a Class of Extremum Problems: Theorems and Conjectures, Preprint, 1993
[10] Gerver M. L., “Hierarchy and Influence Zones for a Class of Extremum Problems: with Applications in Travel-Time Inversion”, Special Semester in Approximation Theory, Israel, 1994
[11] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR
[12] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR
[13] Polia G., Sege G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978
[14] Sperner E., “Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes”, Abh. Math. Sem., 6, Hamburg, 1928, 265–272 | Zbl