A theorem on order relations generated by totally positive kernels
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1241-1269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a result of reflections on a theorem on 'sums of hyperbolae'$^1$ needed in mathematical geophysics. This theorem and several unexpected corollaries of it do not seem very plausible at first sight. The first proof of the theorem did not dispel this impression: the reasons why it was true remained obscure. The explanation was found in the properties of the Cauchy kernel $C(s,x)=1/(s+x)$. In this paper the original theorem on 'hyperbolae' is established as a particular case of a general result holding for a certain class $\mathbb G$ of totally positive kernels which contains $C(s,x)$.
@article{SM_1995_186_9_a1,
     author = {M. L. Gerver and E. A. Kudryavtseva},
     title = {A theorem on order relations generated by totally positive kernels},
     journal = {Sbornik. Mathematics},
     pages = {1241--1269},
     year = {1995},
     volume = {186},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/}
}
TY  - JOUR
AU  - M. L. Gerver
AU  - E. A. Kudryavtseva
TI  - A theorem on order relations generated by totally positive kernels
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1241
EP  - 1269
VL  - 186
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/
LA  - en
ID  - SM_1995_186_9_a1
ER  - 
%0 Journal Article
%A M. L. Gerver
%A E. A. Kudryavtseva
%T A theorem on order relations generated by totally positive kernels
%J Sbornik. Mathematics
%D 1995
%P 1241-1269
%V 186
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/
%G en
%F SM_1995_186_9_a1
M. L. Gerver; E. A. Kudryavtseva. A theorem on order relations generated by totally positive kernels. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1241-1269. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/

[1] Gerver M. L., Markushevich V. M., “Issledovanie neodnoznachnosti pri opredelenii po godografu skorosti rasprostraneniya seismicheskoi volny”, DAN SSSR, 163:6 (1965), 1377–1380

[2] Gerver M. L., Markushevich V. M., “Determination of seismic wave velocity from the travel-time curve”, Geophys. J. R. astr. Soc., 11 (1966), 165–173 | Zbl

[3] Gerver M. L., Markushevich V. M., “Opredelenie po godografu skorosti rasprostraneniya seismicheskoi volny”, Metody i programmy dlya analiza seismicheskikh nablyudenii, Vychisl. seismologiya, 3, Nauka, M., 1967, 3–51

[4] Gerver M. L., “Teoremy sravneniya v odnomernoi obratnoi kinematicheskoi zadache”, Teoriya i algoritmy interpretatsii geofizicheskikh dannykh, Vychisl. seismologiya, 22, Nauka, M., 1989, 127–137

[5] Gerver M. L., “Volnovody i ustoichivye mnogochleny, I”, Kompyuternyi analiz geofizicheskikh polei, Vychisl. seismologiya, 23, Nauka, M., 1990, 182–205

[6] Gerver M. L., “Volnovody i ustoichivye mnogochleny, II”, Sovremennye metody interpretatsii seismologicheskikh dannykh, Vychisl. seismologiya, 24, Nauka, M., 1991, 102–148

[7] Gerver M. L., “Ratsionalnye approksimatsii, ustoichivye mnogochleny i rassloeniya v zadache poiska samogo shirokogo volnovoda”, Geodinamika i prognoz zemletryasenii, Vychisl. seismologiya, 26, Nauka, M., 1994, 176–201

[8] Gerver M. L., Suschestvovanie i edinstvennost maksimuma i teoremy o konusakh $l$-approksimatsiyakh i rassloeniyakh dlya odnogo klassa ekstremalnykh zadach, Preprint, MITP RAN, 1994

[9] Gerver M. L., Hierarchy and Influence Zones for a Class of Extremum Problems: Theorems and Conjectures, Preprint, 1993

[10] Gerver M. L., “Hierarchy and Influence Zones for a Class of Extremum Problems: with Applications in Travel-Time Inversion”, Special Semester in Approximation Theory, Israel, 1994

[11] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[12] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[13] Polia G., Sege G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978

[14] Sperner E., “Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes”, Abh. Math. Sem., 6, Hamburg, 1928, 265–272 | Zbl