A theorem on order relations generated by totally positive kernels
Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1241-1269

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a result of reflections on a theorem on 'sums of hyperbolae'$^1$ needed in mathematical geophysics. This theorem and several unexpected corollaries of it do not seem very plausible at first sight. The first proof of the theorem did not dispel this impression: the reasons why it was true remained obscure. The explanation was found in the properties of the Cauchy kernel $C(s,x)=1/(s+x)$. In this paper the original theorem on 'hyperbolae' is established as a particular case of a general result holding for a certain class $\mathbb G$ of totally positive kernels which contains $C(s,x)$.
@article{SM_1995_186_9_a1,
     author = {M. L. Gerver and E. A. Kudryavtseva},
     title = {A theorem on order relations generated by totally positive kernels},
     journal = {Sbornik. Mathematics},
     pages = {1241--1269},
     publisher = {mathdoc},
     volume = {186},
     number = {9},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/}
}
TY  - JOUR
AU  - M. L. Gerver
AU  - E. A. Kudryavtseva
TI  - A theorem on order relations generated by totally positive kernels
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1241
EP  - 1269
VL  - 186
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/
LA  - en
ID  - SM_1995_186_9_a1
ER  - 
%0 Journal Article
%A M. L. Gerver
%A E. A. Kudryavtseva
%T A theorem on order relations generated by totally positive kernels
%J Sbornik. Mathematics
%D 1995
%P 1241-1269
%V 186
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/
%G en
%F SM_1995_186_9_a1
M. L. Gerver; E. A. Kudryavtseva. A theorem on order relations generated by totally positive kernels. Sbornik. Mathematics, Tome 186 (1995) no. 9, pp. 1241-1269. http://geodesic.mathdoc.fr/item/SM_1995_186_9_a1/