Splitting entire functions with zeros in a strip
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1071-1084
Voir la notice de l'article provenant de la source Math-Net.Ru
The following result is proved. If $\varphi$ is a smooth function with support in the interval $[-N, N]$ and if all the zeros of its Fourier transform
$$
\widehat\varphi(\lambda)=\int e^{\mathrm i\lambda t}\varphi(t)\,dt
$$
are in some horizontal strip, then $\varphi$ can be represented as a convolution of two smooth functions with supports in the interval $[-N/2, N/2]$.
@article{SM_1995_186_7_a8,
author = {R. S. Yulmukhametov},
title = {Splitting entire functions with zeros in a strip},
journal = {Sbornik. Mathematics},
pages = {1071--1084},
publisher = {mathdoc},
volume = {186},
number = {7},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a8/}
}
R. S. Yulmukhametov. Splitting entire functions with zeros in a strip. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1071-1084. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a8/