Splitting entire functions with zeros in a strip
Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1071-1084

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved. If $\varphi$ is a smooth function with support in the interval $[-N, N]$ and if all the zeros of its Fourier transform $$ \widehat\varphi(\lambda)=\int e^{\mathrm i\lambda t}\varphi(t)\,dt $$ are in some horizontal strip, then $\varphi$ can be represented as a convolution of two smooth functions with supports in the interval $[-N/2, N/2]$.
@article{SM_1995_186_7_a8,
     author = {R. S. Yulmukhametov},
     title = {Splitting entire functions with zeros in a strip},
     journal = {Sbornik. Mathematics},
     pages = {1071--1084},
     publisher = {mathdoc},
     volume = {186},
     number = {7},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_7_a8/}
}
TY  - JOUR
AU  - R. S. Yulmukhametov
TI  - Splitting entire functions with zeros in a strip
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1071
EP  - 1084
VL  - 186
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_7_a8/
LA  - en
ID  - SM_1995_186_7_a8
ER  - 
%0 Journal Article
%A R. S. Yulmukhametov
%T Splitting entire functions with zeros in a strip
%J Sbornik. Mathematics
%D 1995
%P 1071-1084
%V 186
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_7_a8/
%G en
%F SM_1995_186_7_a8
R. S. Yulmukhametov. Splitting entire functions with zeros in a strip. Sbornik. Mathematics, Tome 186 (1995) no. 7, pp. 1071-1084. http://geodesic.mathdoc.fr/item/SM_1995_186_7_a8/