A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 151-162
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Under the assumption of the continuum hypothesis we construct a differentiable $n$-manifold $M^{n,m}$, $4\leqslant n$, of dimension  
$$
m-1\leqslant\dim M^{n,m}\leqslant m+n-3\leqslant\operatorname{Ind}M^{n,m}\leqslant m+n-1.
$$
The space $M^{n,m}$ is perfectly normal and hereditarily separable.
			
            
            
            
          
        
      @article{SM_1995_186_1_a8,
     author = {V. V. Fedorchuk},
     title = {A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis},
     journal = {Sbornik. Mathematics},
     pages = {151--162},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/}
}
                      
                      
                    V. V. Fedorchuk. A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 151-162. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/