A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 151-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Under the assumption of the continuum hypothesis we construct a differentiable $n$-manifold $M^{n,m}$, $4\leqslant n$, of dimension $$ m-1\leqslant\dim M^{n,m}\leqslant m+n-3\leqslant\operatorname{Ind}M^{n,m}\leqslant m+n-1. $$ The space $M^{n,m}$ is perfectly normal and hereditarily separable.
@article{SM_1995_186_1_a8,
     author = {V. V. Fedorchuk},
     title = {A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis},
     journal = {Sbornik. Mathematics},
     pages = {151--162},
     publisher = {mathdoc},
     volume = {186},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 151
EP  - 162
VL  - 186
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/
LA  - en
ID  - SM_1995_186_1_a8
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis
%J Sbornik. Mathematics
%D 1995
%P 151-162
%V 186
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/
%G en
%F SM_1995_186_1_a8
V. V. Fedorchuk. A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 151-162. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/