A differentiable manifold with non-coinciding dimensions under the continuum hypothesis
Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 151-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under the assumption of the continuum hypothesis we construct a differentiable $n$-manifold $M^{n,m}$, $4\leqslant n, of dimension $$ m-1\leqslant\dim M^{n,m}\leqslant m<m+n-3\leqslant\operatorname{Ind}M^{n,m}\leqslant m+n-1. $$ The space $M^{n,m}$ is perfectly normal and hereditarily separable.
@article{SM_1995_186_1_a8,
     author = {V. V. Fedorchuk},
     title = {A differentiable manifold with non-coinciding dimensions under the~continuum hypothesis},
     journal = {Sbornik. Mathematics},
     pages = {151--162},
     year = {1995},
     volume = {186},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - A differentiable manifold with non-coinciding dimensions under the continuum hypothesis
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 151
EP  - 162
VL  - 186
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/
LA  - en
ID  - SM_1995_186_1_a8
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T A differentiable manifold with non-coinciding dimensions under the continuum hypothesis
%J Sbornik. Mathematics
%D 1995
%P 151-162
%V 186
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/
%G en
%F SM_1995_186_1_a8
V. V. Fedorchuk. A differentiable manifold with non-coinciding dimensions under the continuum hypothesis. Sbornik. Mathematics, Tome 186 (1995) no. 1, pp. 151-162. http://geodesic.mathdoc.fr/item/SM_1995_186_1_a8/

[1] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[2] Postnikov M. M., Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[3] Fedorchuk V. V., “O razmernosti nigde ne plotnykh podmnozhestv mnogoobrazii”, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 2, 23–28 | MR

[4] Fedorchuk V. V., Filippov V. V., “Mnogoobraziya s nesovpadayuschimi induktivnymi razmernostyami”, Matem. sb., 183 (225) (1992), 29–44

[5] Anderson R. D., “Monotone interior dimension-raising mappings”, Duke Math. J., 19 (1952), 359–366 | DOI | MR | Zbl

[6] Anderson R. D., “A continuous curve admitting monotone open maps onto all locally connected metric continua”, Bull. AMS, 62 (1956), 264–265

[7] Brown M., “Some application of an approximation theorem for inverse limits”, Proc. AMS, 11:3 (1960), 478–483 | DOI | MR | Zbl

[8] Engelking R., Dimensiom theory, PWN, Warszawa, 1978 | Zbl

[9] Fedorchuk V. V., “On the dimension of hereditarily normal spaces”, Proc. London Math. Soc. Third Ser., 36 (1978), 163–175 | DOI | MR | Zbl

[10] Fedorchuk V. V., “A differentiable manifold with noncoinsiding dimensions”, Topology and its Appl., 54 (1993), 221–239 | DOI | MR | Zbl

[11] Jech T. J., Lectures in set theory with particular emphasis on the method of forcing, Springer-Verlag, 1971 | MR | Zbl

[12] Jensen R. B., “The fine structure of the constructible hierarchy”, Ann. Math. Logic, 4 (1972), 229–308 | DOI | MR | Zbl

[13] Koch W., Puppe D., “Differenzierbare Structuren auf Manigfaltigkeiten ohne ab-zahlbare Basis”, Archiv der Math., 19 (1968), 95–102 | DOI | MR | Zbl

[14] Kozlowski G., Zenor P., “A differentiable, perfectly normal, nonmetrizable manifold”, Topol. Proc., 4 (1979), 453–461 | MR

[15] Nyikos P., “The theory of nonmetrizable manifolds”, Handbook of set-theoretic topology, Amsterdam, 1984, 633–684 | MR | Zbl

[16] Rudin M. E., “The undecidability of the existence of a perfectly normal nonmetrizable manifold”, Houston J. Math., 5 (1979), 249–252 | MR | Zbl

[17] Rudin M. E., Zenor P., “A perfectly normal nonmetrizable manifold”, Houston J. Math., 2 (1976), 129–134 | MR | Zbl

[18] Szentmiklossy Z., “$S$-spaces and $L$-spaces under Martin's axiom”, II (Budapest, 1978), Coll. Math. Soc. Janos Bolyai, 23, Amsterdam, 1980, 1139–1145 | MR | Zbl

[19] Wilson D. C., “Open mappings of the universal curve onto continuous curves”, Trans. AMS, 168 (1972), 497–515 | DOI | MR | Zbl