New theorems on the mean for solutions of the Helmholtz equation
Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 281-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the solutions of the equation $\Delta u+u=0$ are characterized by vanishing of integrals over all balls in $R^n$ with radii belonging to the zero set of the Bessel function $J_{n/2}$. This result enables us to get a solution of the Pompeiu problem on the class of functions of slow growth in terms of approximation in $L(R^n)$ by linear combinations with special radii.
@article{SM_1994_79_2_a2,
     author = {V. V. Volchkov},
     title = {New theorems on the~mean for solutions of {the~Helmholtz} equation},
     journal = {Sbornik. Mathematics},
     pages = {281--286},
     year = {1994},
     volume = {79},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_2_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - New theorems on the mean for solutions of the Helmholtz equation
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 281
EP  - 286
VL  - 79
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_2_a2/
LA  - en
ID  - SM_1994_79_2_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T New theorems on the mean for solutions of the Helmholtz equation
%J Sbornik. Mathematics
%D 1994
%P 281-286
%V 79
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_79_2_a2/
%G en
%F SM_1994_79_2_a2
V. V. Volchkov. New theorems on the mean for solutions of the Helmholtz equation. Sbornik. Mathematics, Tome 79 (1994) no. 2, pp. 281-286. http://geodesic.mathdoc.fr/item/SM_1994_79_2_a2/

[1] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[2] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958

[3] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rat. Mech. Anal., 47 (1972), 237–254 | DOI | MR | Zbl

[4] Williams S., “A partial solution of the Pompeiu problem”, Math. Ann., 223 (1976), 84–91 | DOI | MR

[5] Volchkov V. V., “O funktsiyakh s nulevymi integralami po nekotorym mnozhestvam”, Doklady AN USSR, 1990, no. 8, 9–11 | MR | Zbl

[6] Volchkov V. V., “Teoremy o srednem znachenii dlya nekotorykh differentsialnykh uravnenii”, Doklady AN USSR, 1991, no. 6, 8–11 | MR

[7] Volchkov V. V., “Teoremy o sharovykh srednikh dlya nekotorykh differentsialnykh uravnenii”, Doklady AN USSR, 1992, no. 5, 9–12

[8] Zalcman L., “Offbeat integral geometry”, Amer Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl

[9] Berenstein C. A., Zalcman L., “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[10] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl

[11] Volchkov V. V., O funktsiyakh s nulevymi integralami po nekotorym mnozhestvam, Dep v UkrNIINTI. 24.10.90. No 1748 UK90, Donets. un-t, Donetsk, 1990

[12] Volchkov V. V., “Problema Pompeiyu na ogranichennykh oblastyakh”, Materialy Vsesoyuznoi konferentsii po teorii priblizheniya funktsii (Dnepropetrovsk, 26–29 iyunya 1990 g.), 32–33

[13] Leng S., $SL_2(R)$, Mir, M., 1977

[14] Zastavnyi V. P., Teorema o nulyakh preobrazovaniyakh Fure indikatora i ee primenenie, Dep. v VINITI 29.01.87. No 701 V. 87, Red. “Sib. matem. zhurn.”, Novosibirsk, 1986

[15] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR