On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 313-330

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{a_k\}_{k=0}^\infty$ and $\{b_k\}_{k=0}^\infty$ be sequences of real numbers and let $ S_n(x)$ be defined by $$ S_n(x)=\sum^n_{k=0}\bigl(a_k\cos(kx)+b_k\sin(kx)\bigr),\qquad n=0,1,\dotsc\,. $$ It is proved that the estimate $$ \max_x S_n(x)\leqslant 4a_0 n^{1-\alpha}, $$ holds for each natural number $n$ such that $S_m(x)\geqslant0$ for all $x$ and $m=1,\,\dots,\,n$. Here $\alpha\in(0,\,1)$ is the unique root of the equation $$ \int^{3\pi /2}_0 t^{-\alpha}\cos t\,dt=0. $$ It is proved that the order $n^{1-\alpha}$ in this estimate cannot be improved. Various generalizations of this result are also obtained.
@article{SM_1994_77_2_a4,
     author = {A. S. Belov},
     title = {On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates},
     journal = {Sbornik. Mathematics},
     pages = {313--330},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 313
EP  - 330
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/
LA  - en
ID  - SM_1994_77_2_a4
ER  - 
%0 Journal Article
%A A. S. Belov
%T On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates
%J Sbornik. Mathematics
%D 1994
%P 313-330
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/
%G en
%F SM_1994_77_2_a4
A. S. Belov. On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 313-330. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/