On upper estimates of the partial sums of a trigonometric series in terms of lower estimates
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 313-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{a_k\}_{k=0}^\infty$ and $\{b_k\}_{k=0}^\infty$ be sequences of real numbers and let $ S_n(x)$ be defined by $$ S_n(x)=\sum^n_{k=0}\bigl(a_k\cos(kx)+b_k\sin(kx)\bigr),\qquad n=0,1,\dotsc\,. $$ It is proved that the estimate $$ \max_x S_n(x)\leqslant 4a_0 n^{1-\alpha}, $$ holds for each natural number $n$ such that $S_m(x)\geqslant0$ for all $x$ and $m=1,\,\dots,\,n$. Here $\alpha\in(0,\,1)$ is the unique root of the equation $$ \int^{3\pi /2}_0 t^{-\alpha}\cos t\,dt=0. $$ It is proved that the order $n^{1-\alpha}$ in this estimate cannot be improved. Various generalizations of this result are also obtained.
@article{SM_1994_77_2_a4,
     author = {A. S. Belov},
     title = {On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates},
     journal = {Sbornik. Mathematics},
     pages = {313--330},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On upper estimates of the partial sums of a trigonometric series in terms of lower estimates
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 313
EP  - 330
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/
LA  - en
ID  - SM_1994_77_2_a4
ER  - 
%0 Journal Article
%A A. S. Belov
%T On upper estimates of the partial sums of a trigonometric series in terms of lower estimates
%J Sbornik. Mathematics
%D 1994
%P 313-330
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/
%G en
%F SM_1994_77_2_a4
A. S. Belov. On upper estimates of the partial sums of a trigonometric series in terms of lower estimates. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 313-330. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/

[1] Darsow W., “On boundedness of trigonometric series”, J. London Math. Soc., 35:2 (1960), 237–238 | DOI | MR | Zbl

[2] Konyagin S. V., “O predelakh neopredelennosti trigonometricheskikh ryadov”, Matem. zametki, 44:6 (1988), 770–784 | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[4] Belov A. S., “O koeffitsientakh trigonometricheskikh kosinus-ryadov s neotritsatelnymi chastnymi summami”, Tr. MIAN, 190, Nauka, M., 1989, 3–21 | MR

[5] Grandjot K., Jarnik V., Landau E., Littlewood J. E., “Bestimmung einer absoluten Konstanten aus der Theorie der trigonometrische Reihen”, Ann. Mat. pura ed appl., 6:4 (1929), 1–7 | DOI | MR | Zbl

[6] Luke Y. L., Fair W., Coombs G., Moran R., “On a constant in the theory trigonometric series”, Math. Comp., 19:91 (1965), 501–502 | Zbl

[7] Chowlaa S., “Some applications of a method of a Selberg”, J. Reine Angew. Math., 217 (1965), 128–132 | MR

[8] Izumi M., Izumi Sh.-I., “On some trigonometrical polynomials”, Math. Scand., 21:1 (1967), 38–44 | MR | Zbl

[9] Djaĉenko M. I., “On some properlies of trigonometric series with monotone decreasing coefficients”, Anal. Math., 10:3 (1984), 193–205 | DOI | MR

[10] Belov A. S., “O koeffitsientakh trigonometricheskikh ryadov s neotritsatelnymi chastnymi summami”, Matem. zametki, 41:2 (1987), 152–158 | MR | Zbl