On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 313-330
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{a_k\}_{k=0}^\infty$ and $\{b_k\}_{k=0}^\infty$ be sequences of real numbers and let $ S_n(x)$ be defined by
$$
S_n(x)=\sum^n_{k=0}\bigl(a_k\cos(kx)+b_k\sin(kx)\bigr),\qquad
n=0,1,\dotsc\,.
$$
It is proved that the estimate
$$
\max_x S_n(x)\leqslant 4a_0 n^{1-\alpha},
$$
holds for each natural number $n$ such that $S_m(x)\geqslant0$ for all $x$ and
$m=1,\,\dots,\,n$. Here $\alpha\in(0,\,1)$ is the unique root of the equation
$$
\int^{3\pi /2}_0 t^{-\alpha}\cos t\,dt=0.
$$
It is proved that the order $n^{1-\alpha}$ in this estimate cannot be improved. Various generalizations of this result are also obtained.
@article{SM_1994_77_2_a4,
author = {A. S. Belov},
title = {On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates},
journal = {Sbornik. Mathematics},
pages = {313--330},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/}
}
A. S. Belov. On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 313-330. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a4/