Calderón–Zygmund theory for kernels with nondiscrete sets of singularities
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 77-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach encompassing diverse locations of the singularities of convolution kernels by a single method is presented. In particular, the author introduces the notion of a so-called supersingular kernel, whose singularities lie on a set of arbitrary structure, in general, and a theorem on the continuity in $L^p(\mathbb R^N)$, $1, of the operator of convolution with it is established. Together with the theorem on convergence almost everywhere of the sequence of convolutions defining this operator, with cutoffs of the kernel defined in a special way, it is a generalization of fundamental results of Calderón–Zygmund.
@article{SM_1994_77_1_a5,
     author = {N. M. Kasumov},
     title = {Calder\'on{\textendash}Zygmund theory for kernels with nondiscrete sets of singularities},
     journal = {Sbornik. Mathematics},
     pages = {77--91},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a5/}
}
TY  - JOUR
AU  - N. M. Kasumov
TI  - Calderón–Zygmund theory for kernels with nondiscrete sets of singularities
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 77
EP  - 91
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a5/
LA  - en
ID  - SM_1994_77_1_a5
ER  - 
%0 Journal Article
%A N. M. Kasumov
%T Calderón–Zygmund theory for kernels with nondiscrete sets of singularities
%J Sbornik. Mathematics
%D 1994
%P 77-91
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a5/
%G en
%F SM_1994_77_1_a5
N. M. Kasumov. Calderón–Zygmund theory for kernels with nondiscrete sets of singularities. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 77-91. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a5/

[1] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[2] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986

[3] Chang S-Y. A., Fefferman R., “Some recent developments in Fourier analysis and $H^p$-theory on product domains”, Bull. Amer. Math. Soc. (N.S.), 12:2 (1985), 1–41 | DOI | MR

[4] Coifman R. R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51 (1974), 241–250 | MR | Zbl

[5] David G., “Opérateurs de Calderón-Zygmund”, Intern. Congress Math., Berkeley, 1986, 890–899 | MR

[6] Duoandikoetxea J., “Multiple singular integrals and maximal functions along hypersurfaces”, Ann. Inst. Fourier, 36:4 (1986), 185–206 | MR | Zbl

[7] Fefferman C., Stein E. M., “$H^p$-spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl

[8] Fefferman R., “Harmonic analysis on product spaces”, Ann. Math. (2nd Ser.), 126:1 (1987), 109–130 | MR | Zbl

[9] Fefferman R., Stein E. M., “Singular integrals on product spaces”, Adv. Math., 45:2 (1982), 117–143 | DOI | MR | Zbl

[10] Journé J.-L., Calderón-Zygmund operators, pseudodifferential operators and Cauchy integral of Calderón, Lect. Notes in Math., 994, Springer, N.Y., 1983 | MR | Zbl

[11] Rubio de Francia J. L., Ruiz F. J., Torrea J. L., “Calderon-Zygmund theory for operator-valued kernels”, Adv. Math., 62:1 (1986), 7–48 | DOI | MR | Zbl